313 research outputs found

    Reduced neural activity of the prefrontal cognitive control circuitry during response inhibition to negative words in people with schizophrenia

    Full text link
    BACKGROUND: Schizophrenia is characterized by deficits in executive control and impairments in emotion processing. This study assessed the nature and extent of potential alterations in the neural substrates supporting the interaction between cognitive control mechanisms and emotion attribution processes in people with schizophrenia. METHODS: Functional magnetic resonance imaging was performed during a verbal emotional go/no-go task. People with schizophrenia and healthy controls responded to word stimuli of a prespecified emotional valence (positive, negative or neutral) while inhibiting responses to stimuli of a different valence. RESULTS: We enrolled 20 people with schizophrenia and 23 controls in the study. Healthy controls activated an extensive dorsal prefrontal–parietal network while inhibiting responses to negative words compared to neutral words, but showed deactivation of the midcingulate cortex while inhibiting responses to positive words compared to neutral words. People with schizophrenia failed to activate this network during response inhibition to negative words, whereas during response inhibition to positive words they did not deactivate the cingulate, but showed increased responsivity in the frontal cortex. LIMITATIONS: Sample heterogeneity is characteristic of studies of schizophrenia and may have contributed to more variable neural responses in the patient sample despite the care taken to control for potentially confounding variables. CONCLUSION: Our results showed that schizophrenia is associated with aberrant modulation of neural responses during the interaction between cognitive control and emotion processing. Failure of the frontal circuitry to regulate goal-directed behaviour based on emotion attributions may contribute to deficits in psychosocial functioning in daily life

    Consumer credit information systems: A critical review of the literature. Too little attention paid by lawyers?

    Get PDF
    This paper reviews the existing literature on consumer credit reporting, the most extensively used instrument to overcome information asymmetry and adverse selection problems in credit markets. Despite the copious literature in economics and some research in regulatory policy, the legal community has paid almost no attention to the legal framework of consumer credit information systems, especially within the context of the European Union. Studies on the topic, however, seem particularly relevant in view of the establishment of a single market for consumer credit. This article ultimately calls for further legal research to address consumer protection concerns and inform future legislation

    Adjunctive selective estrogen receptor modulator increases neural activity in the hippocampus and inferior frontal gyrus during emotional face recognition in schizophrenia

    Get PDF
    Estrogen has been implicated in the development and course of schizophrenia with most evidence suggesting a neuroprotective effect. Treatment with raloxifene, a selective estrogen receptor modulator, can reduce symptom severity, improve cognition and normalize brain activity during learning in schizophrenia. People with schizophrenia are especially impaired in the identification of negative facial emotions. The present study was designed to determine the extent to which adjunctive raloxifene treatment would alter abnormal neural activity during angry facial emotion recognition in schizophrenia. Twenty people with schizophrenia (12 men, 8 women) participated in a 13-week, randomized, double-blind, placebo-controlled, crossover trial of adjunctive raloxifene treatment (120 mg per day orally) and performed a facial emotion recognition task during functional magnetic resonance imaging after each treatment phase. Two-sample t-tests in regions of interest selected a priori were performed to assess activation differences between raloxifene and placebo conditions during the recognition of angry faces. Adjunctive raloxifene significantly increased activation in the right hippocampus and left inferior frontal gyrus compared with the placebo condition (family-wise error, P<0.05). There was no significant difference in performance accuracy or reaction time between active and placebo conditions. To the best of our knowledge, this study provides the first evidence suggesting that adjunctive raloxifene treatment changes neural activity in brain regions associated with facial emotion recognition in schizophrenia. These findings support the hypothesis that estrogen plays a modifying role in schizophrenia and shows that adjunctive raloxifene treatment may reverse abnormal neural activity during facial emotion recognition, which is relevant to impaired social functioning in men and women with schizophrenia

    Frontal and Parietal Contributions to Probabilistic Association Learning

    Get PDF
    Neuroimaging studies have shown both dorsolateral prefrontal (DLPFC) and inferior parietal cortex (iPARC) activation during probabilistic association learning. Whether these cortical brain regions are necessary for probabilistic association learning is presently unknown. Participants' ability to acquire probabilistic associations was assessed during disruptive 1 Hz repetitive transcranial magnetic stimulation (rTMS) of the left DLPFC, left iPARC, and sham using a crossover single-blind design. On subsequent sessions, performance improved relative to baseline except during DLPFC rTMS that disrupted the early acquisition beneficial effect of prior exposure. A second experiment examining rTMS effects on task-naive participants showed that neither DLPFC rTMS nor sham influenced naive acquisition of probabilistic associations. A third experiment examining consecutive administration of the probabilistic association learning test revealed early trial interference from previous exposure to different probability schedules. These experiments, showing disrupted acquisition of probabilistic associations by rTMS only during subsequent sessions with an intervening night's sleep, suggest that the DLPFC may facilitate early access to learned strategies or prior task-related memories via consolidation. Although neuroimaging studies implicate DLPFC and iPARC in probabilistic association learning, the present findings suggest that early acquisition of the probabilistic cue-outcome associations in task-naive participants is not dependent on either region

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    The Treatment of Hallucinations in Schizophrenia Spectrum Disorders

    Get PDF
    This article reviews the treatment of hallucinations in schizophrenia. The first treatment option for hallucinations in schizophrenia is antipsychotic medication, which can induce a rapid decrease in severity. Only 8% of first-episode patients still experience mild to moderate hallucinations after continuing medication for 1 year. Olanzapine, amisulpride, ziprasidone, and quetiapine are equally effective against hallucinations, but haloperidol may be slightly inferior. If the drug of first choice provides inadequate improvement, it is probably best to switch medication after 2-4 weeks of treatment. Clozapine is the drug of choice for patients who are resistant to 2 antipsychotic agents. Blood levels should be above 350-450 mu g/ml for maximal effect. For relapse prevention, medication should be continued in the same dose. Depot medication should be considered for all patients because nonadherence is high. Cognitive-behavioral therapy (CBT) can be applied as an augmentation to antipsychotic medication. The success of CBT depends on the reduction of catastrophic appraisals, thereby reducing the concurrent anxiety and distress. CBT aims at reducing the emotional distress associated with auditory hallucinations and develops new coping strategies. Transcranial magnetic stimulation (TMS) is capable of reducing the frequency and severity of auditory hallucinations. Several meta-analyses found significantly better symptom reduction for low-frequency repetitive TMS as compared with placebo. Consequently, TMS currently has the status of a potentially useful treatment method for auditory hallucinations, but only in combination with state of the art antipsychotic treatment. Electroconvulsive therapy (ECT) is considered a last resort for treatment-resistant psychosis. Although several studies showed clinical improvement, a specific reduction in hallucination severity has never been demonstrated

    Plasmodium falciparum metacaspase PfMCA-1 triggers a z-VAD-fmk inhibitable protease to promote cell death.

    Get PDF
    Activation of proteolytic cell death pathways may circumvent drug resistance in deadly protozoan parasites such as Plasmodium falciparum and Leishmania. To this end, it is important to define the cell death pathway(s) in parasites and thus characterize proteases such as metacaspases (MCA), which have been reported to induce cell death in plants and Leishmania parasites. We, therefore, investigated whether the cell death function of MCA is conserved in different protozoan parasite species such as Plasmodium falciparum and Leishmania major, focusing on the substrate specificity and functional role in cell survival as compared to Saccharomyces cerevisae. Our results show that, similarly to Leishmania, Plasmodium MCA exhibits a calcium-dependent, arginine-specific protease activity and its expression in yeast induced growth inhibition as well as an 82% increase in cell death under oxidative stress, a situation encountered by parasites during the host or when exposed to drugs such as artemisins. Furthermore, we show that MCA cell death pathways in both Plasmodium and Leishmania, involve a z-VAD-fmk inhibitable protease. Our data provide evidence that MCA from both Leishmania and Plasmodium falciparum is able to induce cell death in stress conditions, where it specifically activates a downstream enzyme as part of a cell death pathway. This enzymatic activity is also induced by the antimalarial drug chloroquine in erythrocytic stages of Plasmodium falciparum. Interestingly, we found that blocking parasite cell death influences their drug sensitivity, a result which could be used to create therapeutic strategies that by-pass drug resistance mechanisms by acting directly on the innate pathways of protozoan cell death

    Adjunctive raloxifene treatment improves attention and memory in men and women with schizophrenia

    Get PDF
    There is increasing clinical and molecular evidence for the role of hormones and specifically estrogen and its receptor in schizophrenia. A selective estrogen receptor modulator, raloxifene, stimulates estrogen-like activity in brain and can improve cognition in older adults. The present study tested the extent to which adjunctive raloxifene treatment improved cognition and reduced symptoms in young to middle-age men and women with schizophrenia. Ninety-eight patients with a diagnosis of schizophrenia or schizoaffective disorder were recruited into a dual-site, thirteen-week, randomized, double-blind, placebocontrolled, crossover trial of adjunctive raloxifene treatment in addition to their usual antipsychotic medications. Symptom severity and cognition in the domains of working memory, attention/processing speed, language and verbal memory were assessed at baseline, 6 and 13 weeks. Analyses of the initial 6-week phase of the study using a parallel groups design (with 39 patients receiving placebo and 40 receiving raloxifene) revealed that participants receiving adjunctive raloxifene treatment showed significant improvement relative to placebo in memory and attention/processing speed. There was no reduction in symptom severity with treatment compared with placebo. There were significant carryover effects, suggesting some cognitive benefits are sustained even after raloxifene withdrawal. Analysis of the 13-week crossover data revealed significant improvement with raloxifene only in attention/processing speed. This is the first study to show that daily, oral adjunctive raloxifene treatment at 120 mg per day has beneficial effects on attention/processing speed and memory for both men and women with schizophrenia. Thus, raloxifene may be useful as an adjunctive treatment for cognitive deficits associated with schizophrenia.TW Weickert, D Weinberg, R Lenroot, SV Catts, R Wells, A Vercammen, M O, Donnell, C Galletly, D Liu, R Balzan, B Short, D Pellen, J Curtis, VJ Carr, J Kulkarni, PR Schofield and CS Weicker

    Vaccines against toxoplasma gondii : challenges and opportunities

    Get PDF
    Development of vaccines against Toxoplasma gondii infection in humans is of high priority, given the high burden of disease in some areas of the world like South America, and the lack of effective drugs with few adverse effects. Rodent models have been used in research on vaccines against T. gondii over the past decades. However, regardless of the vaccine construct, the vaccines have not been able to induce protective immunity when the organism is challenged with T. gondii, either directly or via a vector. Only a few live, attenuated T. gondii strains used for immunization have been able to confer protective immunity, which is measured by a lack of tissue cysts after challenge. Furthermore, challenge with low virulence strains, especially strains with genotype II, will probably be insufficient to provide protection against the more virulent T. gondii strains, such as those with genotypes I or II, or those genotypes from South America not belonging to genotype I, II or III. Future studies should use animal models besides rodents, and challenges should be performed with at least one genotype II T. gondii and one of the more virulent genotypes. Endpoints like maternal-foetal transmission and prevention of eye disease are important in addition to the traditional endpoint of survival or reduction in numbers of brain cysts after challenge
    corecore