4,441 research outputs found

    Particle acceleration and the origin of gamma-ray emission from Fermi Bubbles

    Get PDF
    Fermi LAT has discovered two extended gamma-ray bubbles above and below the galactic plane. We propose that their origin is due to the energy release in the Galactic center (GC) as a result of quasi-periodic star accretion onto the central black hole. Shocks generated by these processes propagate into the Galactic halo and accelerate particles there. We show that electrons accelerated up to ~10 TeV may be responsible for the observed gamma-ray emission of the bubbles as a result of inverse Compton (IC) scattering on the relic photons. We also suggest that the Bubble could generate the flux of CR protons at energies > 10^15 eV because the shocks in the Bubble have much larger length scales and longer lifetimes in comparison with those in SNRs. This may explain the the CR spectrum above the knee.Comment: 5 pages, 4 figures. Expanded version of the contribution to the 32nd ICRC, Beijing, #0589. To appear in the proceeding

    IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline

    Get PDF
    Alzheimer’s disease (AD) is a devastating condition with no known effective treatment. AD is characterized by memory loss as well as impaired locomotor ability, reasoning, and judgment. Emerging evidence suggests that the innate immune response plays a major role in the pathogenesis of AD. In AD, the accumulation of β-amyloid (Aβ) in the brain perturbs physiological functions of the brain, including synaptic and neuronal dysfunction, microglial activation, and neuronal loss. Serum levels of soluble ST2 (sST2), a decoy receptor for interleukin (IL)-33, increase in patients with mild cognitive impairment, suggesting that impaired IL-33/ST2 signaling may contribute to the pathogenesis of AD. Therefore, we investigated the potential therapeutic role of IL-33 in AD, using transgenic mouse models. Here we report that IL-33 administration reverses synaptic plasticity impairment and memory deficits in APP/PS1 mice. IL-33 administration reduces soluble Aβ levels and amyloid plaque deposition by promoting the recruitment and Aβ phagocytic activity of microglia; this is mediated by ST2/p38 signaling activation. Furthermore, IL-33 injection modulates the innate immune response by polarizing microglia/macrophages toward an antiinflammatory phenotype and reducing the expression of proinflammatory genes, including IL-1β, IL-6, and NLRP3, in the cortices of APP/PS1 mice. Collectively, our results demonstrate a potential therapeutic role for IL-33 in AD

    GRBs Optical follow-up observation at Lulin observatory, Taiwan

    Get PDF
    The Lulin GRB program, using the Lulin One-meter Telescope (LOT) in Taiwan started in July 2003. Its scientific aims are to discover optical counterparts of XRFs and short and long GRBs, then to quickly observe them in multiple bands. Thirteen follow-up observations were provided by LOT between July 2003 and Feb. 2005. One host galaxy was found at GRB 031203. Two optical afterglows were detected for GRB 040924 and GRB 041006. In addition, the optical observations of GRB 031203 and a discussion of the non-detection of the optical afterglow of GRB 031203 are also reported in this article.Comment: 5 pages, 2 figure. Accepted for publication into "il nuovo cimento". Proceeding of the 4th Rome GRB conference, eds. L. Piro, L. Amati, S. Covino, B. Gendr

    Choriocapillaris impairment around the atrophic lesions in patients with geographic atrophy: A swept-source optical coherence tomography angiography study

    Get PDF
    Aims To evaluate the choriocapillaris (CC) flow alterations around geographic atrophy (GA) in eyes with dry age-related macular degeneration. Methods Using a swept-source optical coherence tomography angiography (SS-OCTA) device, two volume 6 76 mm scans were acquired in patients with GA presenting between June and December 2017 at the Doheny-UCLA Eye Centers. The area of GA was delineated on the en face structural OCT fundus images. For each eye, the en face OCTA slabs at the level of the CC from the two acquisitions were averaged and compensated for signal loss using the corresponding structural en face images. The resulting images were binarised and analysed for the percentage of flow voids in the para-atrophy zone (a 500 \u3bcm wide ring around the immediate edge of the atrophy) and in the peri-atrophy zone (a 500 \u3bcm wide ring around the para-atrophy zone edge), the latter considered as a reference in the comparative analysis. Results Thirty eyes of 20 patients were enrolled. The percentage of flow voids in the para-atrophy zone was 27.23%\ub16.29% and was significantly higher than in the surrounding peri-atrophy zone (23.4%\ub16.01%; p<0.001). There was no significant correlation between the flow void percentage in these regions and age, visual acuity, extent of the atrophic area or central choroidal thickness. Conclusions A significant impairment of the CC flow is present in the zone immediately surrounding the GA lesions strengthening the hypothesis that CC alterations may be relevant to the progression of GA

    Systems-Level Comparison of Host-Responses Elicited by Avian H5N1 and Seasonal H1N1 Influenza Viruses in Primary Human Macrophages

    Get PDF
    Human disease caused by highly pathogenic avian influenza (HPAI) H5N1 can lead to a rapidly progressive viral pneumonia leading to acute respiratory distress syndrome. There is increasing evidence from clinical, animal models and in vitro data, which suggests a role for virus-induced cytokine dysregulation in contributing to the pathogenesis of human H5N1 disease. The key target cells for the virus in the lung are the alveolar epithelium and alveolar macrophages, and we have shown that, compared to seasonal human influenza viruses, equivalent infecting doses of H5N1 viruses markedly up-regulate pro-inflammatory cytokines in both primary cell types in vitro. Whether this H5N1-induced dysregulation of host responses is driven by qualitative (i.e activation of unique host pathways in response to H5N1) or quantitative differences between seasonal influenza viruses is unclear. Here we used microarrays to analyze and compare the gene expression profiles in primary human macrophages at 1, 3, and 6 h after infection with H5N1 virus or low-pathogenic seasonal influenza A (H1N1) virus. We found that host responses to both viruses are qualitatively similar with the activation of nearly identical biological processes and pathways. However, in comparison to seasonal H1N1 virus, H5N1 infection elicits a quantitatively stronger host inflammatory response including type I interferon (IFN) and tumor necrosis factor (TNF)-α genes. A network-based analysis suggests that the synergy between IFN-β and TNF-α results in an enhanced and sustained IFN and pro-inflammatory cytokine response at the early stage of viral infection that may contribute to the viral pathogenesis and this is of relevance to the design of novel therapeutic strategies for H5N1 induced respiratory disease

    Long-term nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil.

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.  Nitrogen (N) deposition is a component of global change that has considerable impact on belowground carbon (C) dynamics. Plant growth stimulation and alterations of fungal community composition and functions are the main mechanisms driving soil C gains following N deposition in N-limited temperate forests. In N-rich tropical forests, however, N deposition generally has minor effects on plant growth; consequently, C storage in soil may strongly depend on the microbial processes that drive litter and soil organic matter decomposition. Here, we investigated how microbial functions in old-growth tropical forest soil responded to 13 years of N addition at four rates: 0 (Control), 50 (Low-N), 100 (Medium-N), and 150 (High-N) kg N ha-1 yr-1 . Soil organic carbon (SOC) content increased under High-N, corresponding to a 33% decrease in CO2 efflux, and reductions in relative abundances of bacteria as well as genes responsible for cellulose and chitin degradation. A 113% increase in N2 O emission was positively correlated with soil acidification and an increase in the relative abundances of denitrification genes (narG and norB). Soil acidification induced by N addition decreased available P concentrations, and was associated with reductions in the relative abundance of phytase. The decreased relative abundance of bacteria and key functional gene groups for C degradation were related to slower SOC decomposition, indicating the key mechanisms driving SOC accumulation in the tropical forest soil subjected to High-N addition. However, changes in microbial functional groups associated with N and P cycling led to coincidentally large increases in N2 O emissions, and exacerbated soil P deficiency. These two factors partially offset the perceived beneficial effects of N addition on SOC storage in tropical forest soils. These findings suggest a potential to incorporate microbial community and functions into Earth system models considering their effects on greenhouse gas emission, biogeochemical processes and biodiversity of tropical ecosystems. This article is protected by copyright. All rights reserved.National Natural Science Foundation of ChinaNational Key R&D Program of ChinaYouth Innovation Research Team Projec

    Soft optically-tuneable fluorescence phantoms based on gel wax and quantum dots: a tissue surrogate for fluorescence imaging validation

    Get PDF
    Fluorescence-guided brain tumour resection, notably using 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) for high-grade gliomas, has been demonstrated to provide better tissue differentiation, thereby improving patient outcomes when compared to white-light guidance. Novel fluorescence imaging devices aiming to increase detection specificity and sensitivity and targeting applications beyond high-grade gliomas are typically assessed by measurements using tissue-mimicking optical phantoms. The field currently lacks adequate phantoms with well-characterised tuneable optical properties. In this study, we developed soft tissue-mimicking fluorescence phantoms (TMFP) highly suitable for this purpose. We investigated: 1) the ability to independently tune optical and fluorescent properties; 2) the stability of the fluorescence signal over time; and 3) the potential of the proposed phantoms for imaging device validation. The TMFP is based on gel-wax which is an optically transparent mineral-oil based soft material. We embedded TiO2 as scattering material, carbon black oil-paint as background absorber, and CdTe Quantum Dots (QDs) as fluorophore because of its similar fluorescence spectrum to PpIX. Scattering and absorption properties were measured by a spectrophotometer, while the fluorescence was assessed by a wide-field fluorescence imaging system (WFFI) and a spectrometer. We demonstrated that: 1) the addition of QDs didn’t alter the phantom’s scattering which was only defined by the concentration of TiO2, whereas its absorption was defined by both QDs and colour oil paint; 2) the measured fluorescence intensity was linearlyproportional to the concentration of QDs; 3) the fluorescence intensity was stable over time (up to eight months); and 4) the fluorescence signal measured by the WFFI were strongly correlated to spectrometer measurements
    • …
    corecore