81,249 research outputs found
Investigation of Micro Porosity Sintered wick in Vapor Chamber for Fan Less Design
Micro Porosity Sintered wick is made from metal injection molding processes,
which provides a wick density with micro scale. It can keep more than 53 %
working fluid inside the wick structure, and presents good pumping ability on
working fluid transmission by fine infiltrated effect. Capillary pumping
ability is the important factor in heat pipe design, and those general
applications on wick structure are manufactured with groove type or screen
type. Gravity affects capillary of these two types more than a sintered wick
structure does, and mass heat transfer through vaporized working fluid
determines the thermal performance of a vapor chamber. First of all, high
density of porous wick supports high transmission ability of working fluid. The
wick porosity is sintered in micro scale, which limits the bubble size while
working fluid vaporizing on vapor section. Maximum heat transfer capacity
increases dramatically as thermal resistance of wick decreases. This study on
permeability design of wick structure is 0.5 - 0.7, especially permeability (R)
= 0.5 can have the best performance, and its heat conductivity is 20 times to a
heat pipe with diameter (Phi) = 10mm. Test data of this vapor chamber shows
thermal performance increases over 33 %.Comment: Submitted on behalf of TIMA Editions
(http://irevues.inist.fr/tima-editions
Interpenetration as a Mechanism for Liquid-Liquid Phase Transitions
We study simple lattice systems to demonstrate the influence of
interpenetrating bond networks on phase behavior. We promote interpenetration
by using a Hamiltonian with a weakly repulsive interaction with nearest
neighbors and an attractive interaction with second-nearest neighbors. In this
way, bond networks will form between second-nearest neighbors, allowing for two
(locally) distinct networks to form. We obtain the phase behavior from analytic
solution in the mean-field approximation and exact solution on the Bethe
lattice. We compare these results with exact numerical results for the phase
behavior from grand canonical Monte Carlo simulations on square, cubic, and
tetrahedral lattices. All results show that these simple systems exhibit rich
phase diagrams with two fluid-fluid critical points and three thermodynamically
distinct phases. We also consider including third-nearest-neighbor
interactions, which give rise to a phase diagram with four critical points and
five thermodynamically distinct phases. Thus the interpenetration mechanism
provides a simple route to generate multiple liquid phases in single-component
systems, such as hypothesized in water and observed in several model and
experimental systems. Additionally, interpenetration of many such networks
appears plausible in a recently considered material made from nanoparticles
functionalized by single strands of DNA.Comment: 12 pages, 9 figures, submitted to Phys. Rev.
- …