24,831 research outputs found
Birefringent Electroweak Textures
The behaviour of electromagnetic waves propagating through an electroweak
homilia string network is examined. This string network is topologically stable
as a cosmic texture, and is characterized by the spatial variation of the
isospin rotation of the Higgs field. As a consequence the photon field couples
to the intermediate vector bosons, producing a finite range electromagnetic
field. It is found that the propagation speed of the photon depends on its
polarization vector, whence an homilia string network acts as a birefringent
medium. We estimate the birefringent scale for this texture and show that it
depends on the frequency of the electromagnetic wave and the length scale of
the homilia string network.Comment: 10 page
A wider audience: Turning VLBI into a survey instrument
Radio observations using the Very Long Baseline Interferometry (VLBI)
technique typically have fields of view of only a few arcseconds, due to the
computational problems inherent in imaging larger fields. Furthermore,
sensitivity limitations restrict observations to very compact and bright
objects, which are few and far between on the sky. Thus, while most branches of
observational astronomy can carry out sensitive, wide-field surveys, VLBI
observations are limited to targeted observations of carefully selected
objects. However, recent advances in technology have made it possible to carry
out the computations required to target hundreds of sources simultaneously.
Furthermore, sensitivity upgrades have dramatically increased the number of
objects accessible to VLBI observations. The combination of these two
developments have enhanced the survey capabilities of VLBI observations such
that it is now possible to observe (almost) any point in the sky with
milli-arcsecond resolution. In this talk I review the development of wide-field
VLBI, which has made significant progress over the last three years.Comment: Invited review at the General Assembly of the Astronomische
Gesellschaf
Computer-aided communication satellite system analysis and optimization
The capabilities and limitations of the various published computer programs for fixed/broadcast communication satellite system synthesis and optimization are discussed. A satellite Telecommunication analysis and Modeling Program (STAMP) for costing and sensitivity analysis work in application of communication satellites to educational development is given. The modifications made to STAMP include: extension of the six beam capability to eight; addition of generation of multiple beams from a single reflector system with an array of feeds; an improved system costing to reflect the time value of money, growth in earth terminal population with time, and to account for various measures of system reliability; inclusion of a model for scintillation at microwave frequencies in the communication link loss model; and, an updated technological environment
Disks in Expanding FRW Universes
We construct exact solutions to Einstein equations which represent
relativistic disks immersed into an expanding FRW Universe. It is shown that
the expansion influences dynamical characteristics of the disks such as
rotational curves, surface mass density, etc. The effects of the expansion is
exemplified with non-static generalizations of Kuzmin-Curzon and generalized
Schwarzschild disks.Comment: Revised version to appear in ApJ, Latex, 17 pages, 10 figures, uses
aaspp4 and epsf style file
Tycho Brahe's supernova: light from centuries past
The light curve of SN 1572 is described in the terms used nowadays to
characterize SNeIa. By assembling the records of the observations done in
1572--74 and evaluating their uncertainties, it is possible to recover the
light curve and the color evolution of this supernova. It is found that, within
the SNe Ia family, the event should have been a SNIa with a normal rate of
decline, its stretch factor being {\it s} 0.9. Visual light curve near
maximum, late--time decline and the color evolution sustain this conclusion.
After correcting for extinction, the luminosity of this supernova is found to
be M --19.58 --5 log (D/3.5 kpc) 0.42.Comment: 28 pages, 3 figures, 3 tables. submitted to ApJ (Main Journal
DiFX2: A more flexible, efficient, robust and powerful software correlator
Software correlation, where a correlation algorithm written in a high-level
language such as C++ is run on commodity computer hardware, has become
increasingly attractive for small to medium sized and/or bandwidth constrained
radio interferometers. In particular, many long baseline arrays (which
typically have fewer than 20 elements and are restricted in observing bandwidth
by costly recording hardware and media) have utilized software correlators for
rapid, cost-effective correlator upgrades to allow compatibility with new,
wider bandwidth recording systems and improve correlator flexibility. The DiFX
correlator, made publicly available in 2007, has been a popular choice in such
upgrades and is now used for production correlation by a number of
observatories and research groups worldwide. Here we describe the evolution in
the capabilities of the DiFX correlator over the past three years, including a
number of new capabilities, substantial performance improvements, and a large
amount of supporting infrastructure to ease use of the code. New capabilities
include the ability to correlate a large number of phase centers in a single
correlation pass, the extraction of phase calibration tones, correlation of
disparate but overlapping sub-bands, the production of rapidly sampled
filterbank and kurtosis data at minimal cost, and many more. The latest version
of the code is at least 15% faster than the original, and in certain situations
many times this value. Finally, we also present detailed test results
validating the correctness of the new code.Comment: 28 pages, 9 figures, accepted for publication in PAS
Harrison transformation of hyperelliptic solutions and charged dust disks
We use a Harrison transformation on solutions to the stationary axisymmetric
Einstein equations to generate solutions of the Einstein-Maxwell equations. The
case of hyperelliptic solutions to the Ernst equation is studied in detail.
Analytic expressions for the metric and the multipole moments are obtained. As
an example we consider the transformation of a family of counter-rotating dust
disks. The resulting solutions can be interpreted as disks with currents and
matter with a purely azimuthal pressure or as two streams of freely moving
charged particles. We discuss interesting limiting cases as the extreme limit
where the charge becomes identical to the mass, and the ultrarelativistic limit
where the central redshift diverges.Comment: 20 pages, 9 figure
The kinetics of surfactant desorption at the air–solution interface
The kinetics of desorption of the anionic surfactant sodium dodecylbenzene sulfonate at the air–solution interface have been studied using neutron reflectivity (NR). The experimental arrangement incorporates a novel flow cell in which the subphase can be exchanged (diluted) using a laminar flow whilst the surface region remains unaltered. The kinetics of the desorption is relatively slow and occurs over many tens of minutes compared with the dilution timescale of approximately 10–30 minutes. A detailed mathematical model, in which the rate of the desorption is determined by transport through a near-surface diffusion layer into a diluted bulk solution below, is developed and provides a good description of the timedependent adsorption data.\ud
\ud
A key parameter of the model is the ratio of the depth of the diffusion layer, Hc , to the depth of the fluid, Hf, and we find that this is related to the reduced Péclet number, Pe*, for the system, via Hc/Hf, = C/Pe* 1/ 2 . Although from a highly idealised experimental arrangement, the results provide an important insight into the ‘rinse mechanism’, which is applicable to a wide variety of domestic and industrial circumstances
Naked singularity resolution in cylindrical collapse
In this paper, we study the gravitational collapse of null dust in the
cylindrically symmetric spacetime. The naked singularity necessarily forms at
the symmetry axis. We consider the situation in which null dust is emitted
again from the naked singularity formed by the collapsed null dust and
investigate the back-reaction by this emission for the naked singularity. We
show a very peculiar but physically important case in which the same amount of
null dust as that of the collapsed one is emitted from the naked singularity as
soon as the ingoing null dust hits the symmetry axis and forms the naked
singularity. In this case, although this naked singularity satisfies the strong
curvature condition by Kr\'{o}lak (limiting focusing condition), geodesics
which hit the singularity can be extended uniquely across the singularity.
Therefore we may say that the collapsing null dust passes through the
singularity formed by itself and then leaves for infinity. Finally the
singularity completely disappears and the flat spacetime remains.Comment: 17 pages, no figur
Free-space quantum key distribution
A working free-space quantum key distribution (QKD) system has been developed
and tested over a 205-m indoor optical path at Los Alamos National Laboratory
under fluorescent lighting conditions. Results show that free-space QKD can
provide secure real-time key distribution between parties who have a need to
communicate secretly.Comment: 5 pages, 2 figures, 2 tables. To be published in Physical review A on
or about 1 April 199
- …