14 research outputs found

    The Higgs Mass as the Discriminator of Electroweak Models

    Full text link
    In the Minimal Supersymmetric Model (MSSM) and the Next to Minimal Supersymmetric Model [(M+1)SSM], an upper bound on the lightest higgs mass can be calculated. On the other hand, vacuum stability implies a lower limit on the mass of the higgs boson in the Standard Model (SM). We find that a gap exists for mt>165m_t \stackrel{>}{\sim} 165 GeV between the SM and both the MSSM and the (M+1)SSM bounds. Thus, if the new top quark mass measurement by CDF remains valid, a first measurement of the higgs mass will serve to exclude either the SM or the MSSM/(M+1)SSM higgs sectors. In addition, we discuss Supersymmetric Grand Unified Theories, other extentions of the SM, the discovery potential of the lightest higgs, and the assumptions on which our conclusions are based.Comment: 9 pages, 2 figures, VAND-TH-94-1

    Dynamical Supersymmetry Breaking

    Get PDF
    Supersymmetry is one of the most plausible and theoretically motivated frameworks for extending the Standard Model. However, any supersymmetry in Nature must be a broken symmetry. Dynamical supersymmetry breaking (DSB) is an attractive idea for incorporating supersymmetry into a successful description of Nature. The study of DSB has recently enjoyed dramatic progress, fueled by advances in our understanding of the dynamics of supersymmetric field theories. These advances have allowed for direct analysis of DSB in strongly coupled theories, and for the discovery of new DSB theories, some of which contradict early criteria for DSB. We review these criteria, emphasizing recently discovered exceptions. We also describe, through many examples, various techniques for directly establishing DSB by studying the infrared theory, including both older techniques in regions of weak coupling, and new techniques in regions of strong coupling. Finally, we present a list of representative DSB models, their main properties, and the relations between them.Comment: 113 pages, Revtex. Minor changes, references added and corrected. To appear in Reviews of Modern Physic

    Higgs Mass Bounds Separate Models of Electroweak Symmetry Breaking

    Get PDF
    Vacuum stability implies a lower limit on the mass of the higgs boson in the Standard Model (SM). In contrast, an upper limit on the lightest higgs mass can be calculated in supersymmetric (susy) models. The main uncertainty in each limit is the value of the top mass, which may now be fixed by the recent CDF result. We study the possibility that these bounds do not overlap, and find that (i) a mass gap emerges at mt160m_t\sim 160 GeV between the SM and the Minimal Susy Standard Model (MSSM); and between the SM and the Minimal plus Singlet Susy Model [(M+1)SSM] if the independent scalar self--coupling of the latter is perturbatively small or if the tanβ\tan\beta parameter is large; this gap widens with increasing mtm_t; (ii) there is no overlap between the SM and the MSSM bounds at even smaller values of mtm_t for the tanβ\tan\beta value (1\sim 1--2) preferred in Supersymmetric Grand Unified Theories. Thus, if the new top mass measurement remains valid, a measurement of the first higgs mass will serve to exclude either the SM or MSSM/(M+1)SSM higgs sectors. In addition, we discuss the upper bound on the lightest higgs mass in susy models with an extended higgs sector, and in models with a strongly interacting higgs sector. Finally, we comment on the discovery potential for the lightest higgses in these models.Comment: 18 pages, 5 figures, VAND-TH-94-1

    Progression of liver fibrosis following acute hepatitis C virus infection in HIV-positive MSM

    No full text
    Molecular basis of virus replication, viral pathogenesis and antiviral strategie
    corecore