10 research outputs found

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Tungsten doped diamond shells for record neutron yield inertial confinement fusion experiments at the National Ignition Facility

    No full text
    We report on fabrication and characterization of layered, tungsten doped, spherical about 2 mm diameter microcrystalline diamond ablator shells for inertial confinement fusion (ICF) experiments at the National Ignition Facility. As previously reported, diamond ICF ablator shells can be fabricated by chemical vapor deposition (CVD) on solid spherical silicon mandrels using an ellipsoidal microwave plasma reactor. In the present work, we further developed these ablator shells by embedding a W -doped diamond layer sandwiched between two undoped diamond regions. W incorporation in diamond was achieved by adding tungsten hexacarbonyl to the CH _4 /H _2 CVD feed gas. We observe that the W doping concentration decreases with increasing deposition rate which, in turn, is controlled by adjusting the total gas pressure. Cross sectional microstructural analysis reveals sharp interfaces between doped and undoped regions of the diamond shell and uniform W distribution with concentrations up to about 0.3 at.%. At higher W concentrations (>0.3 at.%) formation of tungsten carbide precipitates is observed. Using a 3‐shock 1.6 MJ laser pulse, the targets described in this work produced the first laser driven implosion to break the 1 × 10 ^16 neutron yield barrier, followed by experiments (described in future publications) with similar targets and slightly more laser energy producing yields as high as 4 × 10 ^17

    Achievement of Target Gain Larger than Unity in an Inertial Fusion Experiment

    No full text

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    No full text

    Achievement of Target Gain Larger than Unity in an Inertial Fusion Experiment

    No full text

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Full text link

    Achievement of Target Gain Larger than Unity in an Inertial Fusion Experiment

    No full text

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    No full text

    Achievement of target gain larger than unity in an inertial fusion experiment

    No full text
    On December 5, 2022, an indirect drive fusion implosion on the National Ignition Facility (NIF) achieved a target gain G_{target} of 1.5. This is the first laboratory demonstration of exceeding "scientific breakeven" (or G_{target}>1) where 2.05 MJ of 351 nm laser light produced 3.1 MJ of total fusion yield, a result which significantly exceeds the Lawson criterion for fusion ignition as reported in a previous NIF implosion [H. Abu-Shawareb et al. (Indirect Drive ICF Collaboration), Phys. Rev. Lett. 129, 075001 (2022)PRLTAO0031-900710.1103/PhysRevLett.129.075001]. This achievement is the culmination of more than five decades of research and gives proof that laboratory fusion, based on fundamental physics principles, is possible. This Letter reports on the target, laser, design, and experimental advancements that led to this result
    corecore