770 research outputs found
When do Projections Commute?
Necessary and sufficient conditions for commutativity of two projections in Hilbert space are given through properties of so-called conditional connectives which are derived from the conditional probability operator PQP. This approach unifies most of the known proofs, provides a few new criteria, and permits certain suggestive interpretations for compound properties of quantum-mechanical systems
Deployable and erectable concepts for large spacecraft
Computerized structural sizing techniques were used to determine structural proportions of minimum mass tetrahedral truss platforms designed for low Earth and geosynchronous orbit. Optimum (minimum mass) deployable and erectable, hexagonal shaped spacecraft are sized to satisfy multiple design requirements and constraints. Strut dimensions characterizing minimum mass designs are found to be significantly more slender than those conventionally used for structural applications. Comparison studies show that mass characteristics of deployable and erectable platforms are approximately equal and that the shuttle flights required by deployable trusses become excessive above certain critical stiffness values. Recent investigations of eractable strut assembly are reviewed. Initial erectable structure assembly experiments show that a pair of astronauts can achieve EVA assembly times of 2-5 min/strut and studies indicate that an automated assembler can achieve times of less than 1 min/strut for around the clock operation
A shuttle development flight test vehicle study
A study is presented that identifies the potential performance capability of the production shuttle orbiter for powered flight tests using several propulsion systems following vertical takeoff and using J-2 rocket engines following air launch. Of the approaches considered, the air-launched orbiter equipped with J-2 rocket engines appeared to have the highest potential for early shuttle development flights. With this approach, mach 4 appeared attainable using 45.5K kg (100K lb) of internal propellant. Several issues were identified that require resolution to prove feasibility
One year of continuous measurements constraining methane emissions from the Baltic Sea to the atmosphere using a ship of opportunity
Methane and carbon dioxide were measured with
an autonomous and continuous running system on a ferry line crossing the Baltic Sea on a 2–3 day interval from the Mecklenburg Bight to the Gulf of Finland in 2010. Surface methane saturations show great seasonal differences in shallow regions like the Mecklenburg Bight (103–507 %) compared to deeper regions like the Gotland Basin (96–161 %).
The influence of controlling parameters like temperature, wind, mixing depth and processes like upwelling, mixing of the water column and sedimentary methane emissions on methane oversaturation and emission to the atmosphere are investigated. Upwelling was found to influence methane surface concentrations in the area of Gotland significantly during
the summer period. In February 2010, an event of elevated methane concentrations in the surface water and water column of the Arkona Basin was observed, which could be linked to a wind-derived water level change as a potential
triggering mechanism. The Baltic Sea is a source of methane to the atmosphere throughout the year, with highest fluxes occurring during the winter season. Stratification was found
to promote the formation of a methane reservoir in deeper regions like Gulf of Finland or Bornholm Basin, which leads to long lasting elevated methane concentrations and enhanced
methane fluxes, when mixed to the surface during mixed layer deepening in autumn and winter. Methane concentrations and fluxes from shallow regions like the Mecklenburg
Bight are predominantly controlled by sedimentary production and consumption of methane, wind events and the change in temperature-dependent solubility of methane in the surface water. Methane fluxes vary significantly in shallow regions (e.g. Mecklenburg Bight) and regions with a temporal
stratification (e.g. Bornholm Basin, Gulf of Finland).
On the contrary, areas with a permanent stratification like the Gotland Basin show only small seasonal fluctuations in methane fluxes
Enhanced lifetime of methane bubble streams within the deep ocean
We have made direct comparisons of the dissolution and rise rates of methane and argon bubbles experimentally released in the ocean at depths from 440 to 830 m. The bubbles were injected from the ROV Ventana into a box open at the top and the bottom, and imaged by HDTV while in free motion. The vehicle was piloted upwards at the rise rate of the bubbles. Methane and argon show closely similar behavior at depths above the methane hydrate stability field. Below that boundary (∼520 m) markedly enhanced methane bubble lifetimes are observed, and are attributed to the formation of a hydrate skin. This effect greatly increases the ease with which methane gas released at depth, either by natural or industrial events, can penetrate the shallow ocean layers
Performance assessment of aero-assisted orbital transfer vehicles
Aero-assisted orbital transfer vehicles are analyzed. The aerodynamic characteristics over the flight profile and three- and six-degree-of-freedom performance analyses were determined. The important results, to date, are: (1) the aerodynamic preliminary analysis system, an interactive computer program, used to predict the aerodynamics (performance, stability, and control) for these vehicles; (2) the performance capability, e.g., maximum inclination change, maximum heating rate, and maximum sensed acceleration, can be determined using continuum aerodynamics only; (3) guidance schemes can be developed that allow for errors in atmospheric density prediction, mispredicted trim angle of attack, and off-nominal atmospheric interface conditions, even for vehicles with a low lift-to-drag ratio; and (4) multiple pass trajectories can be used to reduce the maximum heating rate
Fluxes and fate of dissolved methane released at the seafloor at the landward limit of the gas hydrate stability zone offshore western Svalbard
Widespread seepage of methane from seafloor sediments offshore Svalbard close to the landward limit of the gas hydrate stability zone (GHSZ) may, in part, be driven by hydrate destabilization due to bottom water warming. To assess whether this methane reaches the atmosphere where it may contribute to further warming, we have undertaken comprehensive surveys of methane in seawater and air on the upper slope and shelf region. Near the GHSZ limit at ?400 m water depth, methane concentrations are highest close to the seabed, reaching 825 nM. A simple box model of dissolved methane removal from bottom waters by horizontal and vertical mixing and microbially mediated oxidation indicates that ?60% of methane released at the seafloor is oxidized at depth before it mixes with overlying surface waters. Deep waters are therefore not a significant source of methane to intermediate and surface waters; rather, relatively high methane concentrations in these waters (up to 50 nM) are attributed to isopycnal turbulent mixing with shelf waters. On the shelf, extensive seafloor seepage at <100 m water depth produces methane concentrations of up to 615 nM. The diffusive flux of methane from sea to air in the vicinity of the landward limit of the GHSZ is ?4–20 ?mol m?2 d?1, which is small relative to other Arctic sources. In support of this, analyses of mole fractions and the carbon isotope signature of atmospheric methane above the seeps do not indicate a significant local contribution from the seafloor source
Characterization of Atmospheric Turbulence Effects Over 149 km Propagation Path Using Multi-Wavelength Laser Beacons
We describe preliminary results of a set of laser beam propagation experiments performed over a long (149 km) near-horizontal propagation path between Mauna Loa (Hawaii Island) and Haleakala (Island of Maui) mountains in February 2010. The distinctive feature of the experimental campaign referred to here as the Coherent Multi-Beam Atmospheric Transceiver (COMBAT) experiments is that the measurements of the atmospheric-turbulence induced laser beam intensity scintillations at the receiver telescope aperture were obtained simultaneously using three laser sources (laser beacons) with different wavelengths (λ1 = 0.53 μm, λ2 = 1.06 μm, and λ3 = 1.55 μm). The presented experimental results on intensity scintillation characteristics reveal complexity of the observed phenomena that cannot be fully explained based on the existing atmospheric turbulence models
- …