95 research outputs found
Thermal Equation of State of Tantalum
We have investigated the thermal equation of state of tantalum from first
principles using the Linearized Augmented Plane Wave (LAPW) and pseudopotential
methods for pressures up to 300 GPa and temperatures up to 10000 K. The
equation of state at zero temperature was computed using LAPW. For finite
temperatures, mixed basis pseudopotential computations were performed for 54
atom supercells. The vibrational contributions were obtained by computing the
partition function using the particle in a cell model, and the the finite
temperature electronic free energy was obtained from the LAPW band structures.
We discuss the behavior of thermal equation of state parameters such as the
Gr\"uneisen parameter , , the thermal expansivity , the
Anderson-Gr\"uneisen parameter as functions of pressure and
temperature. The calculated Hugoniot shows excellent agreement with shock-wave
experiments. An electronic topological transition was found at approximately
200 GPa
Wolbachia in the flesh: symbiont intensities in germ-line and somatic tissues challenge the conventional view of Wolbachia transmission routes
Symbionts can substantially affect the evolution and ecology of their hosts. The investigation of the tissue-specific distribution of symbionts (tissue tropism) can provide important insight into host-symbiont interactions. Among other things, it can help to discern the importance of specific transmission routes and potential phenotypic effects. The intracellular bacterial symbiont Wolbachia has been described as the greatest ever panzootic, due to the wide array of arthropods that it infects. Being primarily vertically transmitted, it is expected that the transmission of Wolbachia would be enhanced by focusing infection in the reproductive tissues. In social insect hosts, this tropism would logically extend to reproductive rather than sterile castes, since the latter constitute a dead-end for vertically transmission. Here, we show that Wolbachia are not focused on reproductive tissues of eusocial insects, and that non-reproductive tissues of queens and workers of the ant Acromyrmex echinatior, harbour substantial infections. In particular, the comparatively high intensities of Wolbachia in the haemolymph, fat body, and faeces, suggest potential for horizontal transmission via parasitoids and the faecal-oral route, or a role for Wolbachia modulating the immune response of this host. It may be that somatic tissues and castes are not the evolutionary dead-end for Wolbachia that is commonly thought
Nucleotide and phylogenetic analyses of the Chlamydia trachomatis ompA gene indicates it is a hotspot for mutation
<p>Abstract</p> <p>Background</p> <p>Serovars of the human pathogen <it>Chlamydia trachomatis </it>occupy one of three specific tissue niches. Genomic analyses indicate that the serovars have a phylogeny congruent with their pathobiology and have an average substitution rate of less than one nucleotide per kilobase. In contrast, the gene that determines serovar specificity, <it>ompA</it>, has a phylogenetic association that is not congruent with tissue tropism and has a degree of nucleotide variability much higher than other genomic loci. The <it>ompA </it>gene encodes the major surface-exposed antigenic determinant, and the observed nucleotide diversity at the <it>ompA </it>locus is thought to be due to recombination and host immune selection pressure. The possible contribution of a localized increase in mutation rate, however, has not been investigated.</p> <p>Results</p> <p>Nucleotide diversity and phylogenetic relationships of the five constant and four variable domains of the <it>ompA </it>gene, as well as several loci surrounding <it>ompA</it>, were examined for each serovar. The loci flanking the <it>ompA </it>gene demonstrated that nucleotide diversity increased monotonically as <it>ompA </it>is approached and that their gene trees are not congruent with either <it>ompA </it>or tissue tropism. The variable domains of the <it>ompA </it>gene had a very high level of non-synonymous change, which is expected as these regions encode the surface-exposed epitopes and are under positive selection. However, the synonymous changes are clustered in the variable regions compared to the constant domains; if hitchhiking were to account for the increase in synonymous changes, these substitutions should be more evenly distributed across the gene. Recombination also cannot entirely account for this increase as the phylogenetic relationships of the constant and variable domains are congruent with each other.</p> <p>Conclusions</p> <p>The high number of synonymous substitutions observed within the variable domains of <it>ompA </it>appears to be due to an increased mutation rate within this region of the genome, whereas the increase in nucleotide substitution rate and the lack of phylogenetic congruence in the regions flanking <it>ompA </it>are characteristic motifs of gene conversion. Together, the increased mutation rate in the <it>ompA </it>gene, in conjunction with gene conversion and positive selection, results in a high degree of variability that promotes host immune evasion.</p
Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells
The major-histocompatibility-complex-(MHC)-class-I-related molecule MR1 can present activating and non-activating vitamin-B-based ligands to mucosal-associated invariant T cells (MAIT cells). Whether MR1 binds other ligands is unknown. Here we identified a range of small organic molecules, drugs, drug metabolites and drug-like molecules, including salicylates and diclofenac, as MR1-binding ligands. Some of these ligands inhibited MAIT cells ex vivo and in vivo, while others, including diclofenac metabolites, were agonists. Crystal structures of a T cell antigen receptor (TCR) from a MAIT cell in complex with MR1 bound to the non-stimulatory and stimulatory compounds showed distinct ligand orientations and contacts within MR1, which highlighted the versatility of the MR1 binding pocket. The findings demonstrated that MR1 was able to capture chemically diverse structures, spanning mono- and bicyclic compounds, that either inhibited or activated MAIT cells. This indicated that drugs and drug-like molecules can modulate MAIT cell function in mammals
Interleukin-15 promotes intestinal dysbiosis with butyrate deficiency associated with increased susceptibility to colitis
Dysbiosis resulting in gut-microbiome alterations with reduced butyrate production are thought to disrupt intestinal immune homeostasis and promote complex immune disorders. However, whether and how dysbiosis develops before the onset of overt pathology remains poorly defined. Interleukin-15 (IL-15) is upregulated in distressed tissue and its overexpression is thought to predispose susceptible individuals to and have a role in the pathogenesis of celiac disease and inflammatory bowel disease (IBD). Although the immunological roles of IL-15 have been largely studied, its potential impact on the microbiota remains unexplored. Analysis of 16S ribosomal RNA-based inventories of bacterial communities in mice overexpressing IL-15 in the intestinal epithelium (villin-IL-15 transgenic (v-IL-15tg) mice) shows distinct changes in the composition of the intestinal bacteria. Although some alterations are specific to individual intestinal compartments, others are found across the ileum, cecum and feces. In particular, IL-15 overexpression restructures the composition of the microbiota with a decrease in butyrate-producing bacteria that is associated with a reduction in luminal butyrate levels across all intestinal compartments. Fecal microbiota transplant experiments of wild-type and v-IL-15tg microbiota into germ-free mice further indicate that diminishing butyrate concentration observed in the intestinal lumen of v-IL-15tg mice is the result of intrinsic alterations in the microbiota induced by IL-15. This reconfiguration of the microbiota is associated with increased susceptibility to dextran sodium sulfate-induced colitis. Altogether, this study reveals that IL-15 impacts butyrate-producing bacteria and lowers butyrate levels in the absence of overt pathology, which represent events that precede and promote intestinal inflammatory diseases
Clusters as Ligands, Part 3: Generation of Tricobalt Cluster Carboxylate-bridged Iron - Cobalt and Manganese - Cobalt Mixed-metal Alkoxide Cubes from Iron and Manganese Tricobalt Cluster Metal Carboxylates
The reaction of the cluster-substituted carboxylic acid, (CO)9Co3CCOOH, with M(CH3CO2)2 permits the isolation of M2(CO)9Co3CCO24(THF)2, M = Mn (1), Fe (2), Co (3) respectively. Single crystals could not be obtained directly from any of these compounds; however, the slow redox degradation of Hg(CO)9Co3CCO22 in THF leads to crystalline [Co2((CO)9Co3CCO2)4(THF)2], which has been characterized by single crystal X-ray structure analysis. Both compounds 1 and 2 react with methanol and the products [MIII2CoII2(MeO)6(MeOH)2(CO)9Co3CCO24] · 2MeOH, M = Mn (4), Fe (5) respectively, have been isolated as crystalline solids. The formulation of these new mixed-metal cubane clusters is based on analytical data, single crystal X-ray structure analysis, and the Mössbauer spectrum of 5. The inner CoII centers are derived from sacrificial decomposition of the tricobalt clusters during precipitation of the product. For both 4 and 5 the magnetic susceptibility data show high room temperature magnetic moments which decrease with decreasing temperature consistent with weak antiferromagnetic coupling between the core metal centers and with S = 0 ground states. The formation of these unusual carboxylate coordinated mixed-metal alkoxide cubes derives from the properties of a transition metal cluster as a substituent as well as its tendency to engage in redox chemistry with other metal species. © 1997 Elsevier Science S.A
- …