569 research outputs found
The effect of desiccation on the emission of volatile bromocarbons from two common temperate macroalgae
Exposure of intertidal macroalgae during low tide has been linked to the emission of a variety of atmospherically-important trace gases into the coastal atmosphere. In recent years, several studies have investigated the role of inorganic iodine and organoiodides as antioxidants and their emission during exposure to combat oxidative stress, yet the role of organic bromine species during desiccation is less well understood. In this study the emission of dibromomethane (CH2Br2) and bromoform (CHBr3) during exposure and desiccation of two common temperate macroalgae, Fucus vesiculosus and Ulva intestinalis, is reported. Determination of the impact exposure may have on algal physiological processes is difficult as intertidal species are adapted to desiccation and may undergo varying degrees of desiccation before their physiology is affected. For this reason we include comparisons between photosynthetic capacity (Fv/Fm) and halocarbon emissions during a desiccation time series. In addition, the role of rewetting with freshwater to simulate exposure to rain was also investigated. Our results show that an immediate flux of bromocarbons occurs upon exposure, followed by a decline in bromocarbon emissions. We suggest that this immediate bromocarbon pulse may be linked to volatilisation or emissions of existing bromocarbon stores from the algal surface rather than the production of bromocarbons as an antioxidant response
Responding to Paradoxical Organisational Demands for AI-Powered Systems considering Fairness
Developing and maintaining fair AI is increasingly in demand when unintended ethical issues contaminate the benefits of AI and cause negative implications for individuals and society. Organizations are challenged by simultaneously managing the divergent needs derived from the instrumental and humanistic goals of employing AI. In responding to the challenge, this paper draws on the paradox theory from a sociotechnical lens to first explore the contradictory organizational needs salient in the lifecycle of AI-powered systems. Moreover, we intend to unfold the responding process of the company to illuminate the role of social agents and technical artefacts in the process of managing paradoxical needs. To achieve the intention of the study, we conduct an in-depth case study on an AI-powered talent recruitment system deployed in an IT company. This study will contribute to research and practice regarding how organizational use of digital technologies generates positive ethical implications for individuals and society
New method for analytical photovoltaic parameters identification: meeting manufacturer’s datasheet for different ambient conditions
At present, photovoltaic energy is one of the most important renewable energy sources. The demand for solar panels has been continuously growing, both in the industrial electric sector and in the private sector. In both cases the analysis of the solar panel efficiency is extremely important in order to maximize the energy production. In order to have a more efficient photovoltaic system, the most accurate understanding of this system is required. However, in most of the cases the only information available in this matter is reduced, the experimental testing of the photovoltaic device being out of consideration, normally for budget reasons. Several methods, normally based on an equivalent circuit model, have been developed to extract the I-V curve of a photovoltaic device from the small amount of data provided by the manufacturer. The aim of this paper is to present a fast, easy, and accurate analytical method, developed to calculate the equivalent circuit parameters of a solar panel from the only data that manufacturers usually provide. The calculated circuit accurately reproduces the solar panel behavior, that is, the I-V curve. This fact being extremely important for practical reasons such as selecting the best solar panel in the market for a particular purpose, or maximize the energy extraction with MPPT (Maximum Peak Power Tracking) methods
References
www.biogeosciences-discuss.net/11/10673/2014/ doi:10.5194/bgd-11-10673-2014 © Author(s) 2014. CC Attribution 3.0 License. This discussion paper is/has been under review for the journal Biogeosciences (BG). Please refer to the corresponding final paper in BG if available. The effect of desiccation on the emission of volatile bromocarbons from two common temperate macroalga
EPI-001, A Compound Active against Castration-Resistant Prostate Cancer, Targets Transactivation Unit 5 of the Androgen Receptor
ACKNOWLEDGEMENTS We thank J. M. Valverde (IRB) as well as the NMR facilities of the University of Barcelona (CCiT UB) and the Instituto de Química Física Rocasolano (IQFR, CSIC) for their assistance in, respectively, protein production and NMR. This work was supported by IRB, ICREA (X.S.), Obra Social “la Caixa” (Fellowship to E.D.M. and CancerTec grants to X.S.) MICINN (CTQ2009-08850 to X.S.), MINECO (BIO2012-31043 to X.S.; CTQ2014-56361-P to A.R), Marató de TV3 (102030 to X.S. and 102031 to E.E.P) the COFUND programme of the European Commission (C.T.W.P., A. R. and X.S.), the European Research Council (CONCERT, contract number 648201, to X.S.), the Ramón y Cajal program of MICINN (RYC-2011-07873 to C.W.B.) the Serra Hunter Programme (E.E.P.) and AGAUR (SGR-2014-56RR14 to E.E.P). IRB Barcelona is the recipient of a Severo Ochoa Award of Excellence from MINECO (Government of Spain)Peer reviewedPostprin
An Energy Dependent Model for Type I Magnetic Contrast in the Scanning Electron Microscope
The modelling of the magnetic contrast phenomenon in the scanning electron microscope (SEM) is important in understanding the physics of the contrast mechanism and the associated signal detection. In this paper, we report an improved analytical model for Type I magnetic contrast calculations using an approximate form of the Chung and Everhart secondary electron (SE) energy distribution. Previous studies have neglected this factor by assuming a mono-energetic model in order to simplify the calculations. This new model can be used to study different material specimens by appropriate choice of the work function and field-distance integral. The effect of energy filtering on the Type I magnetic contrast and quality factor can also be studied with the improved model by substituting the low and high energy limits of the filtered SE distribution into the closed-form analytical expressions obtained. Results of the above-mentioned effects and the effect of collector aperturing are reported in this paper using the new improved energy dependent model
Supergravity loop contributions to brane world supersymmetry breaking
We compute the supergravity loop contributions to the visible sector scalar
masses in the simplest 5D `brane-world' model. Supersymmetry is assumed to be
broken away from the visible brane and the contributions are UV finite due to
5D locality. We perform the calculation with N = 1 supergraphs, using a
formulation of 5D supergravity in terms of N = 1 superfields. We compute
contributions to the 4D effective action that determine the visible scalar
masses, and we find that the mass-squared terms are negative.Comment: 12 pages, LaTeX 2
Codon 249 mutation of the p53 gene is a rare event in hepatocellular carcinomas from ethnic Chinese in Singapore.
The present study characterised p53 mutations in 44 hepatocellular carcinomas (HCCs) from Chinese patients residing in a high-incidence area. Twelve point mutations (27%) were detected in tumour tissues using single-strand conformation polymorphism analysis followed by direct DNA sequencing. Remarkably, no mutations were observed at codon 249. This is in contrast to HCCs from other high HCC incidence areas with endemic aflatoxin exposures, in which codon 249 is a mutational hot spot. It is therefore suggested that risk factors other than dietary exposure to aflatoxin may contribute to the high HCC incidence in Singapore
Target capture sequencing for phylogenomic and population studies in the Southeast Asian genus Palaquium (Sapotaceae)
ACKNOWLEDGEMENTS We thank the management of the National Parks Board and Singapore Botanic Gardens for providing continuous support, facilities and fieldwork approval in Singapore’s nature reserves. We appreciate the digital research team at the University of Aberdeen and the research/scientific computing teams at The James Hutton Institute and NIAB for providing technical support while using the computational resources on the respective HPC clusters, “Maxwell” and the “UK Crop Diversity Bioformatics HPC” (BBSRC grant BB/S019669/1), which have contributed to the results within this paper. We thank numerous staff at the Singapore Botanic Gardens, particularly Khoo-Woon Mui Hwang and Neo Wei Ling for strong technical support in the molecular lab, Matti Niissalo for generous sharing of lab protocols and bioinformatics tips, Choo Le Min for patient help with lab troubleshooting, Chong Kwek Yan and Chan Pin Jia for forest survey expertise, and Louise Neo for thoughtful field and R advice. Our sincere thanks are due to Herbarium staff at the Royal Botanic Garden Edinburgh, including Lesley Scott, for efficient assistance in sending silica-dried samples to the Singapore Botanic Gardens. We also thank Camille Christe at the Conservatoire et Jardin botaniques de la Ville de Genève for kind advice related to the taxon-specific baits’ setup and purchase FUNDING We are grateful to the Lady Yuen Peng McNeice Charitable Foundation for financial support of this study.Peer reviewedPublisher PD
- …