35 research outputs found

    Enhancing the measurement of clinical outcomes using Microsoft Kinect

    Get PDF
    There is a growing body of applications leveraging Microsoft Kinect and the associated Windows Software Development Kit in health and wellness. In particular, this platform has been valuable in developing interactive solutions for rehabilitation including creating more engaging exercise regimens and ensuring that exercises are performed correctly for optimal outcomes. Clinical trials rely upon robust and validated methodologies to measure health status and to detect treatment-related changes over time to enable the efficacy and safety of new drug treatments to be assessed and measured. In many therapeutic areas, traditional outcome measures rely on subjective investigator and patient ratings. Subjective ratings are not always sensitive to detecting small improvements, are subject to inter- and intra-rater variability and limited in their ability to record detailed or subtle aspects of movement and mobility. For these reasons, objective measurements may provide greater sensitivity to detect treatment-related changes where they exist. In this review paper, we explore the use of the Kinect platform to develop low-cost approaches to objectively measure aspects of movement. We consider published applications that measure aspects of gait and balance, upper extremity movement, chest wall motion and facial analysis. In each case, we explore the utility of the approach for clinical trials, and the precision and accuracy of estimates derived from the Kinect output. We conclude that the use of games platforms such as Microsoft Kinect to measure clinical outcomes offer a versatile, easy to use and low-cost approach that may add significant value and utility to clinical drug development, in particular in replacing conventional subjective measures and providing richer information about movement than previously possible in large scale clinical trials, especially in the measurement of gross spatial movements. Regulatory acceptance of clinical outcomes collected in this way will be subject to comprehensive assessment of validity and clinical relevance, and this will require good quality peer-reviewed publications of scientific evidence

    Objective measurement of sedentary behaviour using accelerometers

    Get PDF
    Background: Sedentary behaviour (SB) is an important risk factor for a number of chronic diseases. Although gaps remain in our knowledge of the elements of SB most associated with reduced health outcomes, measuring SB is important, especially in less active patient populations where treatment-related changes may be seen first in changes in SB.Methods: We review current published work in the measurement of SB to make recommendations for SB measurement in clinical studies.Results: To help move our understanding of the area forward, we propose a set of derived measures of SB that can be easily understood and interpreted.Conclusion: Although there is more work required to determine and validate the most clinically relevant and sensitive measures of SB, there is enough understanding of how to measure SB to enable its inclusion in study protocols

    Raising the profile of pilot and feasibility studies in relation to the development, evaluation and implementation of patient-reported outcome measures.

    Get PDF
    This editorial introduces a new special series on the pilot and feasibility testing of patient-reported outcome measures (PROMs) in the on-line open access journal Pilot and Feasibility Studies. Pilot and feasibility studies are typically implemented to address issues of uncertainty before undertaking a larger definitive study such as a randomised controlled trial or large scale survey. This editorial considers the role that such pilot and feasibility testing plays in relation to the development, evaluation and implementation of PROMs. This is often an essential element of PROM research but is typically overlooked-especially within current methodological guidance, reporting space and also debate. This editorial aims to open up a dialogue about the role of pilot and feasibility testing in relation to PROMs. It highlights some of the areas in PROMs research where these types of studies have been carried out and discusses the ways in which the PROM community may be better supported and encouraged to integrate this element of the research process into their PROM-based work

    Mode equivalence and acceptability of tablet computer-, interactive voice response system-, and paper-based administration of the U.S. National Cancer Institute’s Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE)

    Get PDF
    Background PRO-CTCAE is a library of items that measure cancer treatment-related symptomatic adverse events (NCI Contracts: HHSN261201000043C and HHSN 261201000063C). The objective of this study is to examine the equivalence and acceptability of the three data collection modes (Web-enabled touchscreen tablet computer, Interactive voice response system [IVRS], and paper) available within the US National Cancer Institute (NCI) Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE) measurement system. Methods Participants (n = 112; median age 56.5; 24 % high school or less) receiving treatment for cancer at seven US sites completed 28 PRO-CTCAE items (scoring range 0–4) by three modes (order randomized) at a single study visit. Subjects completed one page (approx. 15 items) of the EORTC QLQ-C30 between each mode as a distractor. Item scores by mode were compared using intraclass correlation coefficients (ICC); differences in scores within the 3-mode crossover design were evaluated with mixed-effects models. Difficulties with each mode experienced by participants were also assessed. Results 103 (92 %) completed questionnaires by all three modes. The median ICC comparing tablet vs IVRS was 0.78 (range 0.55–0.90); tablet vs paper: 0.81 (0.62–0.96); IVRS vs paper: 0.78 (0.60–0.91); 89 % of ICCs were ≥0.70. Item-level mean differences by mode were small (medians [ranges] for tablet vs. IVRS = −0.04 [−0.16–0.22]; tablet vs paper = −0.02 [−0.11–0.14]; IVRS vs paper = 0.02 [−0.07–0.19]), and 57/81 (70 %) items had bootstrapped 95 % CI around the effect sizes within +/−0.20. The median time to complete the questionnaire by tablet was 3.4 min; IVRS: 5.8; paper: 4.0. The proportion of participants by mode who reported “no problems” responding to the questionnaire was 86 % tablet, 72 % IVRS, and 98 % paper. Conclusions Mode equivalence of items was moderate to high, and comparable to test-retest reliability (median ICC = 0.80). Each mode was acceptable to a majority of respondents. Although the study was powered to detect moderate or larger discrepancies between modes, the observed ICCs and very small mean differences between modes provide evidence to support study designs that are responsive to patient or investigator preference for mode of administration, and justify comparison of results and pooled analyses across studies that employ different PRO-CTCAE modes of administration. Trial registration NCT Clinicaltrials.gov identifier: NCT0215863

    Bulk geochemical and lipid biomarker data for sediment core W8402A-14

    No full text
    Eleven sediment samples taken downcore and representing the past 26 kyr of deposition at MANOP site C (0°57.2°N, 138°57.3°W) were analyzed for lipid biomarker composition. Biomarkers of both terrestrial and marine sources of organic carbon were identified. In general, concentration profiles for these biomarkers and for total organic carbon (TOC) displayed three common stratigraphic features in the time series: (1) a maximum within the surface sediment mixed layer (<=4 ka); (2) a broad minimum extending throughout the interglacial deposit; and (3) a deep, pronounced maximum within the glacial deposit. Using the biomarker records, a simple binary mixing model is described that assesses the proportion of terrestrial to marine TOC in these sediments. Best estimates from this model suggest that ~20% of the TOC is land-derived, introduced by long-range eolian transport, and the remainder is derived from marine productivity. The direct correlation between the records for terrestrial and marine TOC with depth in this core fits an interpretation that primary productivity at site C has been controlled by wind-driven upwelling at least over the last glacial/interglacial cycle. The biomarker records place the greatest wind strength and highest primary productivity within the time frame of 18 to 22 kyr B.P. Diagenetic effects limit our ability to ascertain directly from the biomarker records the absolute magnitude that different types of primary productivity have changed at this ocean location over the past 26 kyr
    corecore