24 research outputs found
The stabilizing role of itinerant ferromagnetism in inter-granular cohesion in iron
We present a simple, general energy functional for ferromagnetic materials
based upon a local spin density extension to the Stoner theory of itinerant
ferromagnetism. The functional reproduces well available ab initio results and
experimental interfacial energies for grain boundaries in iron. The model shows
that inter-granular cohesion along symmetric tilt boundaries in iron is
dependent upon strong magnetic structure at the interface, illuminates the
mechanisms underlying this structure, and provides a simple explanation for
relaxation of the atomic structure at these boundaries.Comment: In review at Phys. Rev. Lett. Submitted 23 September 1997; revised 16
March 199
Prominin-1 (CD133) is not restricted to stem cells located in the basal compartment of murine and human prostate.
BACKGROUND: Rodent and human prominin-1 are expressed in numerous adult epithelia and somatic stem cells. A report has shown that human PROMININ-1 carrying the AC133 epitope can be used to identify rare prostate basal stem cells (Richardson et al., J Cell Sci 2004; 117:3539-3545). Here we re-investigated its general expression in male reproductive tract including mouse and human prostate and in prostate cancer samples using various anti-prominin-1 antibodies. METHODS: The expression was monitored by immunohistochemistry and blotting. Murine tissues were stained with 13A4 monoclonal antibody (mAb) whereas human samples were examined either with the AC133 mAb recognizing the AC133 glycosylation-dependent epitope or 80B258 mAb directed against the PROMININ-1 polypeptide. RESULTS: Mouse prominin-1 was detected at the apical domain of epithelial cells of ductus deferens, seminal vesicles, ampullary glands, and all prostatic lobes. In human prostate, immunoreactivity for 80B258, but not AC133 was revealed at the apical side of some epithelial (luminal) cells, in addition to the minute population of AC133/80B258-positive cells found in basal compartment. Examination of prostate adenocarcinoma revealed the absence of 80B258 immunoreactivity in the tumor regions. However, it was found to be up-regulated in luminal cells in the vicinity of the cancer areas. CONCLUSIONS: Mouse prominin-1 is widely expressed in prostate whereas in human only some luminal cells express it, demonstrating nevertheless that its expression is not solely associated with basal stem cells. In pathological samples, our pilot evaluation shows that PROMININ-1 is down-regulated in the cancer tissues and up-regulated in inflammatory regions. Prostate © 2010 Wiley-Liss, Inc
The stem cell marker CD133 (Prominin-1) is expressed in various human glandular epithelia
Human prominin-1 (CD133) is expressed by various stem and progenitor cells originating from diverse sources. In addition to stem cells, its mouse ortholog is expressed in a broad range of adult epithelial cells, where it is selectively concentrated in their apical domain. The lack of detection of prominin-1 in adult human epithelia might be explained, at least in part, by the specificity of the widely used AC133 antibody, which recognizes an epitope that seems dependent on glycosylation. Here we decided to re-examine its expression in adult human tissues, particularly in glandular epithelia, using a novel monoclonal antibody (80B258) generated against the human prominin-1 polypeptide. In examined tissues, we observed 80B258 immunoreactivity at the apical or apicolateral membranes of polarized cells. For instance, we found expression in secretory serous and mucous cells as well as intercalated ducts of the large salivary and lacrimal glands. In sweat glands including the gland of Moll, 80B258 immunoreactivity was found in the secretory (eccrine and apocrine glands) and duct (eccrine glands) portion. In the liver, 80B258 immunoreactivity was identified in the canals of Hering, bile ductules, and small interlobular bile ducts. In the uterus, we detected 80B258 immunoreactivity in endometrial and cervical glands. Together these data show that the overall expression of human prominin-1 is beyond the rare primitive cells, and it seems to be a general marker of apical or apicolateral membrane of glandular epithelia. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials