339,479 research outputs found

    KLEVER: An experiment to measure \boldmath{BR(KLπ0νν){\rm BR}(K_L \to \pi^0 \nu \overline{\nu})} at the CERN SPS

    Full text link
    The KLEVER experiment aims to measure BR(KLπ0νν){\rm BR}(K_L \to \pi^0 \nu \overline{\nu}), supplementing the ongoing NA62 measurement of BR(K+π+νν){\rm BR}(K^+ \to \pi^+ \nu \overline{\nu}), to provide new input on CKM unitarity and potentially new physics. KLEVER is undergoing continuous development, with particular efforts focused on the design of the target and the beamline. As described here, adaptations are required relative to the K12 beamline in its current format, and a series of simulations has been performed to ensure that an adequate particle flux can be achieved while simultaneously suppressing problematic backgrounds.Comment: Published under licence CC-BY in Journal of Physics: Conference Series (JPCS) by IOP Publishing Ltd, proceedings of 6th Symposium on Prospects in the Physics of Discrete Symmetries, DISCRETE 2018, 26-30 Nov. 2018, Vienna, Austri

    BES with FEM: Building Energy Simulation using Finite Element Methods

    Get PDF
    An overall objective of energy efficiency in the built environment is to improve building and systems performances in terms of durability, comfort and economics. In order to predict, improve and meet a certain set of performance requirements related to the indoor climate of buildings and the associated energy demand, building energy simulation (BES) tools are indispensable. Due to the rapid development of FEM software and the Multiphysics approaches, it should possible to build and simulate full 3D models of buildings regarding the energy demand. The paper presents a methodology for performing building energy simulation with Comsol. The method was applied to an international test box experiment. The results showed an almost perfect agreement between the used BES model and Comsol. These preliminary results confirm the great opportunities to use FEM related software for building energy performance simulation.Comment: 5 pages, 6 figures, Proceedings of the 2012 COMSOL Conference in Mila

    The development of a mapping tool for the evaluation of building systems for future climate scenarios on European scale

    Full text link
    The paper presents a tool for the mapping of the performance of building systems on European scale for different (future) time periods. The tool is to use for users and be applicable for different building systems. Users should also be able to use a broad range of climate parameters to assess the influence of climate change on these climatic parameters. Also should the calculation time be reasonable short. The mapping tool is developed in MATLAB, which can be used by other users for their own studies.Comment: 21 pages, 24 figures, pre-conferenc

    Closed-loop two-echelon repairable item systems

    Get PDF
    In this paper we consider closed loop two-echelon repairable item systems with repair facilities both at a number of local service centers (called bases) and at a central location (the depot). The goal of the system is to maintain a number of production facilities (one at each base) in optimal operational condition. Each production facility consists of a number of identical machines which may fail incidentally. Each repair facility may be considered to be a multi-server station, while any transport from the depot to the bases is modeled as an ample server. At all bases as well as at the depot, ready-for-use spare parts (machines) are kept in stock. Once a machine in the production cell of a certain base fails, it is replaced by a ready-for-use machine from that base's stock, if available. The failed machine is either repaired at the base or repaired at the central repair facility. In the case of local repair, the machine is added to the local spare parts stock as a ready-for-use machine after repair. If a repair at the depot is needed, the base orders a machine from the central spare parts stock to replenish its local stock, while the failed machine is added to the central stock after repair. Orders are satisfied on a first-come-first-served basis while any requirement that cannot be satisfied immediately either at the bases or at the depot is backlogged. In case of a backlog at a certain base, that base's production cell performs worse. To determine the steady state probabilities of the system, we develop a slightly aggregated system model and propose a special near-product-form solution that provides excellent approximations of relevant performance measures. The depot repair shop is modeled as a server with state-dependent service rates, of which the parameters follow from an application of Norton's theorem for Closed Queuing Networks. A special adaptation to a general Multi-Class MDA algorithm is proposed, on which the approximations are based. All relevant performance measures can be calculated with errors which are generally less than one percent, when compared to simulation results. \u

    Quantum simulation of classical thermal states

    Full text link
    We establish a connection between ground states of local quantum Hamiltonians and thermal states of classical spin systems. For any discrete classical statistical mechanical model in any spatial dimension, we find an associated quantum state such that the reduced density operator behaves as the thermal state of the classical system. We show that all these quantum states are unique ground states of a universal 5-body local quantum Hamiltonian acting on a (polynomially enlarged) system of qubits arranged on a 2D lattice. The only free parameters of the quantum Hamiltonian are coupling strengthes of two-body interactions, which allow one to choose the type and dimension of the classical model as well as the interaction strength and temperature.Comment: 4 pages, 1 figur

    Decomposition Based Search - A theoretical and experimental evaluation

    Full text link
    In this paper we present and evaluate a search strategy called Decomposition Based Search (DBS) which is based on two steps: subproblem generation and subproblem solution. The generation of subproblems is done through value ranking and domain splitting. Subdomains are explored so as to generate, according to the heuristic chosen, promising subproblems first. We show that two well known search strategies, Limited Discrepancy Search (LDS) and Iterative Broadening (IB), can be seen as special cases of DBS. First we present a tuning of DBS that visits the same search nodes as IB, but avoids restarts. Then we compare both theoretically and computationally DBS and LDS using the same heuristic. We prove that DBS has a higher probability of being successful than LDS on a comparable number of nodes, under realistic assumptions. Experiments on a constraint satisfaction problem and an optimization problem show that DBS is indeed very effective if compared to LDS.Comment: 16 pages, 8 figures. LIA Technical Report LIA00203, University of Bologna, 200

    Probing the basins of attraction of a recurrent neural network

    Full text link
    A recurrent neural network is considered that can retrieve a collection of patterns, as well as slightly perturbed versions of this `pure' set of patterns via fixed points of its dynamics. By replacing the set of dynamical constraints, i.e., the fixed point equations, by an extended collection of fixed-point-like equations, analytical expressions are found for the weights w_ij(b) of the net, which depend on a certain parameter b. This so-called basin parameter b is such that for b=0 there are, a priori, no perturbed patterns to be recognized by the net. It is shown by a numerical study, via probing sets, that a net constructed to recognize perturbed patterns, i.e., with values of the connections w_ij(b) with b unequal zero, possesses larger basins of attraction than a net made with the help of a pure set of patterns, i.e., with connections w_ij(b=0). The mathematical results obtained can, in principle, be realized by an actual, biological neural net.Comment: 17 pages, LaTeX, 2 figure
    corecore