1,550 research outputs found
Relational physics with real rods and clocks and the measurement problem of quantum mechanics
The use of real clocks and measuring rods in quantum mechanics implies a
natural loss of unitarity in the description of the theory. We briefly review
this point and then discuss the implications it has for the measurement problem
in quantum mechanics. The intrinsic loss of coherence allows to circumvent some
of the usual objections to the measurement process as due to environmental
decoherence.Comment: 19 pages, RevTex, no figure
Steady state entanglement in open and noisy quantum systems at high temperature
We show that quantum mechanical entanglement can prevail even in noisy open
quantum systems at high temperature and far from thermodynamical equilibrium,
despite the deteriorating effect of decoherence. The system consists of a
number N of interacting quantum particles, and it can interact and exchange
particles with some environment. The effect of decoherence is counteracted by a
simple mechanism, where system particles are randomly reset to some standard
initial state, e.g. by replacing them with particles from the environment. We
present a master equation that describes this process, which we can solve
analytically for small N. If we vary the interaction strength and the reset
against decoherence rate, we find a threshold below which the equilibrium state
is classically correlated, and above which there is a parameter region with
genuine entanglement.Comment: 5 pages, 3 figure
Giant Molecular Clouds are More Concentrated to Spiral Arms than Smaller Clouds
From our catalog of Milky Way molecular clouds, created using a temperature
thresholding algorithm on the Bell Laboratories 13CO Survey, we have extracted
two subsets:(1) Giant Molecular Clouds (GMCs), clouds that are definitely
larger than 10^5 solar masses, even if they are at their `near distance', and
(2) clouds that are definitely smaller than 10^5 solar masses, even if they are
at their `far distance'. The positions and velocities of these clouds are
compared to the loci of spiral arms in (l, v) space. The velocity separation of
each cloud from the nearest spiral arm is introduced as a `concentration
statistic'. Almost all of the GMCs are found near spiral arms. The density of
smaller clouds is enhanced near spiral arms, but some clouds (~10%) are
unassociated with any spiral arm. The median velocity separation between a GMC
and the nearest spiral arm is 3.4+-0.6 km/s, whereas the median separation
between smaller clouds and the nearest spiral arm is 5.5+-0.2 km/s.Comment: 11 pages, 3 figure
Quantum decoherence in the theory of open systems
In the framework of the Lindblad theory for open quantum systems, we
determine the degree of quantum decoherence of a harmonic oscillator
interacting with a thermal bath. It is found that the system manifests a
quantum decoherence which is more and more significant in time. We calculate
also the decoherence time scale and analyze the transition from quantum to
classical behaviour of the considered system.Comment: 6 pages; talk at the 3rd International Workshop "Quantum Physics and
Communication" (QPC 2005), Dubna, Russia, 200
Lindblad master equation for the damped harmonic oscillator with deformed dissipation
In the framework of the Lindblad theory for open quantum systems, a master
equation for the quantum harmonic oscillator interacting with a dissipative
environment, in particular with a thermal bath, is derived for the case when
the interaction is based on deformed algebra. The equations of motion for
observables strongly depend on the deformation function. The expectation values
of the number operator and squared number operator are calculated in the limit
of a small deformation parameter for the case of zero temperature of the
thermal bath. The steady state solution of the equation for the density matrix
in the number representation is obtained and its independence of the
deformation is shown.Comment: 15 pages, 2 figure
Quantum bath refrigeration towards absolute zero: unattainability principle challenged
A minimal model of a quantum refrigerator (QR), i.e. a periodically
phase-flipped two-level system permanently coupled to a finite-capacity bath
(cold bath) and an infinite heat dump (hot bath), is introduced and used to
investigate the cooling of the cold bath towards the absolute zero (T=0).
Remarkably, the temperature scaling of the cold-bath cooling rate reveals that
it does not vanish as T->0 for certain realistic quantized baths, e.g. phonons
in strongly disordered media (fractons) or quantized spin-waves in ferromagnets
(magnons). This result challenges Nernst's third-law formulation known as the
unattainability principle
Reply to Comment on "Completely positive quantum dissipation"
This is the reply to a Comment by R. F. O'Connell (Phys. Rev. Lett. 87 (2001)
028901) on a paper written by the author (B. Vacchini, ``Completely positive
quantum dissipation'', Phys.Rev.Lett. 84 (2000) 1374, arXiv:quant-ph/0002094).Comment: 2 pages, revtex, no figure
Quantum Approach to a Derivation of the Second Law of Thermodynamics
We re-interprete the microcanonical conditions in the quantum domain as
constraints for the interaction of the "gas-subsystem" under consideration and
its environment ("container"). The time-average of a purity-measure is found to
equal the average over the respective path in Hilbert-space. We then show that
for typical (degenerate or non-degenerate) thermodynamical systems almost all
states within the allowed region of Hilbert-space have a local von
Neumann-entropy S close to the maximum and a purity P close to its minimum,
respectively. Typically thermodynamical systems should therefore obey the
second law.Comment: 4 pages. Accepted for publication in Phys. Rev. Let
Simulating noisy quantum protocols with quantum trajectories
The theory of quantum trajectories is applied to simulate the effects of
quantum noise sources induced by the environment on quantum information
protocols. We study two models that generalize single qubit noise channels like
amplitude damping and phase flip to the many-qubit situation. We calculate the
fidelity of quantum information transmission through a chaotic channel using
the teleportation scheme with different environments. In this example, we
analyze the role played by the kind of collective noise suffered by the quantum
processor during its operation. We also investigate the stability of a quantum
algorithm simulating the quantum dynamics of a paradigmatic model of chaos, the
baker's map. Our results demonstrate that, using the quantum trajectories
approach, we are able to simulate quantum protocols in the presence of noise
and with large system sizes of more than 20 qubits.Comment: 11 pages, 7 fig
- …