63 research outputs found
Muscle pathology in myotonic dystrophy: light and electron microscopic investigation in eighteen patients
Myotonic dystrophy (DM) is the most common muscular dystrophy in adults.
Two known genetic subtypes include DM1 (myotonic dystrophy type 1) and
DM2 (myotonic dystrophy type 2). Genetic testing is considered as the only
reliable diagnostic criterion in myotonic dystrophies. Relatively little is known
about DM1 and DM2 myopathology. Thus, the aim of our study was to characterise
light and electron microscopic features of DM1 and DM2 in patients with
genetically proven types of the disease. We studied 3 DM1 cases and 15 DM2
cases from which muscle biopsies were taken for diagnostic purposes during
the period from 1973 to 2006, before genetic testing became available at our
hospital. The DM1 group included 3 males (age at biopsy 15–19). The DM2
group included 15 patients (5 men and 10 women, age at biopsy 26–60). The
preferential type 1 fibre atrophy was seen in all three DM1 cases in light microscopy,
and substantial central nucleation was present in two biopsies.
Electron microscopy revealed central nuclei in all three examined muscle biopsies.
No other structural or degenerative changes were detected, probably due to the
young age of our patients. Central nucleation, prevalence of type 2 muscle fibres,
and the presence of pyknotic nuclear clumps were observed in DM2 patients in
light microscopy. Among the ultrastructural abnormalities observed in our DM2
group, the presence of internal nuclei, severely atrophied muscle fibres, and lipofuscin
accumulation were consistent findings. In addition, a variety of ultrastructural
abnormalities were identified by us in DM2. It appears that no single ultrastructural
abnormality is characteristic for the DM2 muscle pathology. It seems, however,
that certain constellations of morphological changes might be indicative of
certain types of myotonic dystrophy. (Folia Morphol 2011; 70, 2: 121–129
Quantum Cascade Microdisk Lasers for Mid Infrared Intra-Cavity Sensing
The design, fabrication, and testing of surface sensitive quantum cascade microdisk lasers in the mid-infrared for intra-cavity spectroscopy and integration with microfluidic delivery is presented
A Peer-reviewed Newspaper About_ Excessive Research
Research on machines, research with machines, and research as a machine.
Publication resulting from research workshop at Exhibition Research Lab, Liverpool John Moores University, organised in collaboration with Liverpool John Moores University and Liverpool Biennial, and transmediale festival for art and digital culture, Berlin
High resolution nuclear magnetic resonance spectroscopy of highly-strained quantum dot nanostructures
Much new solid state technology for single-photon sources, detectors,
photovoltaics and quantum computation relies on the fabrication of strained
semiconductor nanostructures. Successful development of these devices depends
strongly on techniques allowing structural analysis on the nanometer scale.
However, commonly used microscopy methods are destructive, leading to the loss
of the important link between the obtained structural information and the
electronic and optical properties of the device. Alternative non-invasive
techniques such as optically detected nuclear magnetic resonance (ODNMR) so far
proved difficult in semiconductor nano-structures due to significant
strain-induced quadrupole broadening of the NMR spectra. Here, we develop new
high sensitivity techniques that move ODNMR to a new regime, allowing high
resolution spectroscopy of as few as 100000 quadrupole nuclear spins. By
applying these techniques to individual strained self-assembled quantum dots,
we measure strain distribution and chemical composition in the volume occupied
by the confined electron. Furthermore, strain-induced spectral broadening is
found to lead to suppression of nuclear spin magnetization fluctuations thus
extending spin coherence times. The new ODNMR methods have potential to be
applied for non-invasive investigations of a wide range of materials beyond
single nano-structures, as well as address the task of understanding and
control of nuclear spins on the nanoscale, one of the central problems in
quantum information processing
Meta-Analysis of Genome-Wide Association Studies for Abdominal Aortic Aneurysm Identifies Four New Disease-Specific Risk Loci
Rationale: Abdominal aortic aneurysm (AAA) is a complex disease with both genetic and environmental risk factors. Together, 6 previously identified risk loci only explain a small proportion of the heritability of AAA. Objective: To identify additional AAA risk loci using data from all available genome-wide association studies (GWAS). Methods and Results: Through a meta-analysis of 6 GWAS datasets and a validation study totalling 10,204 cases and 107,766 controls we identified 4 new AAA risk loci: 1q32.3 (SMYD2), 13q12.11 (LINC00540), 20q13.12 (near PCIF1/MMP9/ZNF335), and 21q22.2 (ERG). In various database searches we observed no new associations between the lead AAA SNPs and coronary artery disease, blood pressure, lipids or diabetes. Network analyses identified ERG, IL6R and LDLR as modifiers of MMP9, with a direct interaction between ERG and MMP9. Conclusions: The 4 new risk loci for AAA appear to be specific for AAA compared with other cardiovascular diseases and related traits suggesting that traditional cardiovascular risk factor management may only have limited value in preventing the progression of aneurysmal disease
Recommended from our members
Shared Genetic Risk Factors of Intracranial, Abdominal, and Thoracic Aneurysms
Background: Intracranial aneurysms (IAs), abdominal aortic aneurysms (AAAs), and thoracic aortic aneurysms (TAAs) all have a familial predisposition. Given that aneurysm types are known to co‐occur, we hypothesized that there may be shared genetic risk factors for IAs, AAAs, and TAAs. Methods and Results: We performed a mega‐analysis of 1000 Genomes Project‐imputed genome‐wide association study (GWAS) data of 4 previously published aneurysm cohorts: 2 IA cohorts (in total 1516 cases, 4305 controls), 1 AAA cohort (818 cases, 3004 controls), and 1 TAA cohort (760 cases, 2212 controls), and observed associations of 4 known IA, AAA, and/or TAA risk loci (9p21, 18q11, 15q21, and 2q33) with consistent effect directions in all 4 cohorts. We calculated polygenic scores based on IA‐, AAA‐, and TAA‐associated SNPs and tested these scores for association to case‐control status in the other aneurysm cohorts; this revealed no shared polygenic effects. Similarly, linkage disequilibrium–score regression analyses did not show significant correlations between any pair of aneurysm subtypes. Last, we evaluated the evidence for 14 previously published aneurysm risk single‐nucleotide polymorphisms through collaboration in extended aneurysm cohorts, with a total of 6548 cases and 16 843 controls (IA) and 4391 cases and 37 904 controls (AAA), and found nominally significant associations for IA risk locus 18q11 near RBBP8 to AAA (odds ratio [OR]=1.11; P=4.1×10−5) and for TAA risk locus 15q21 near FBN1 to AAA (OR=1.07; P=1.1×10−3). Conclusions: Although there was no evidence for polygenic overlap between IAs, AAAs, and TAAs, we found nominally significant effects of two established risk loci for IAs and TAAs in AAAs. These two loci will require further replication
The V471A polymorphism in autophagy-related gene ATG7 modifies age at onset specifically in Italian Huntington disease patients
The cause of Huntington disease (HD) is a polyglutamine repeat expansion of more than 36 units in the huntingtin protein, which is inversely correlated with the age at onset of the disease. However, additional genetic factors are believed to modify the course and the age at onset of HD. Recently, we identified the V471A polymorphism in the autophagy-related gene ATG7, a key component of the autophagy pathway that plays an important role in HD pathogenesis, to be associated with the age at onset in a large group of European Huntington disease patients. To confirm this association in a second independent patient cohort, we analysed the ATG7 V471A polymorphism in additional 1,464 European HD patients of the “REGISTRY” cohort from the European Huntington Disease Network (EHDN). In the entire REGISTRY cohort we could not confirm a modifying effect of the ATG7 V471A polymorphism. However, analysing a modifying effect of ATG7 in these REGISTRY patients and in patients of our previous HD cohort according to their ethnic origin, we identified a significant effect of the ATG7 V471A polymorphism on the HD age at onset only in the Italian population (327 patients). In these Italian patients, the polymorphism is associated with a 6-years earlier disease onset and thus seems to have an aggravating effect. We could specify the role of ATG7 as a genetic modifier for HD particularly in the Italian population. This result affirms the modifying influence of the autophagic pathway on the course of HD, but also suggests population-specific modifying mechanisms in HD pathogenesis
Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study
Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation
- …