451 research outputs found

    Modeling natural emissions in the Community Multiscale Air Quality (CMAQ) model – Part 2: Modifications for simulating natural emissions

    Get PDF
    The Community Multiscale Air Quality (CMAQ) model version 4.6 has been revised with regard to the representation of chlorine (HCl, ClNO<sub>2</sub>) and sulfur (dimethylsulfide, or DMS, and H<sub>2</sub>S), and evaluated against observations and earlier published models. Chemistry parameterizations were based on published reaction kinetic data and a recently developed cloud chemistry model that includes heterogeneous reactions of organic sulfur compounds. Evaluation of the revised model was conducted using a recently enhanced data base of natural emissions that includes ocean and continental sources of DMS, H<sub>2</sub>S, chlorinated gases and lightning NO<sub>x</sub> for the continental United States and surrounding regions. Results using 2002 meteorology and emissions indicated that most simulated "natural" (plus background) chemical and aerosol species exhibit the expected seasonal variations at the surface. Ozone exhibits a winter and early spring maximum consistent with ozone data and an earlier published model. Ozone distributions reflect the influences of atmospheric dynamics and pollutant background levels imposed on the CMAQ simulation by boundary conditions derived from a global model. A series of model experiments reveals that the consideration of gas-phase organic sulfur chemistry leads to sulfate aerosol increases over most of the continental United States. Cloud chemistry parameterization changes result in widespread decreases in SO<sub>2</sub> across the modeling domain and both increases and decreases in sulfate. Most cloud-mediated sulfate increases occurred mainly over the Pacific Ocean (up to about 0.1 μg m<sup>−3</sup>) but also over and downwind from the Gulf of Mexico (including parts of the eastern US). Geographic variations in simulated SO<sub>2</sub> and sulfate are due to the link between DMS/H<sub>2</sub>S and their byproduct SO<sub>2</sub>, the heterogeneity of cloud cover and precipitation (precipitating clouds act as net sinks for SO<sub>2</sub> and sulfate), and the persistence of cloud cover (the largest relative sulfate increases occurred over the persistently cloudy Gulf of Mexico and western Atlantic Ocean). Overall, the addition of organic sulfur chemistry increased hourly surface sulfate levels by up to 1–2 μg m<sup>−3</sup> but reduced sulfate levels in the vicinity of high SO<sub>2</sub> emissions (e.g., wildfires). Simulated surface levels of DMS compare reasonably well with observations in the marine boundary layer where DMS oxidation product levels are lower than observed. This implies either a low bias in model oxidation rates of organic sulfur species or a low bias in the boundary conditions for DMS oxidation products. This revised version of CMAQ provides a tool for realistically simulating the influence of natural emissions on air quality

    Experimental investigation of planar ion traps

    Full text link
    Chiaverini et al. [Quant. Inf. Comput. 5, 419 (2005)] recently suggested a linear Paul trap geometry for ion trap quantum computation that places all of the electrodes in a plane. Such planar ion traps are compatible with modern semiconductor fabrication techniques and can be scaled to make compact, many zone traps. In this paper we present an experimental realization of planar ion traps using electrodes on a printed circuit board to trap linear chains of tens of 0.44 micron diameter charged particles in a vacuum of 15 Pa (0.1 torr). With these traps we address concerns about the low trap depth of planar ion traps and develop control electrode layouts for moving ions between trap zones without facing some of the technical difficulties involved in an atomic ion trap experiment. Specifically, we use a trap with 36 zones (77 electrodes) arranged in a cross to demonstrate loading from a traditional four rod linear Paul trap, linear ion movement, splitting and joining of ion chains, and movement of ions through intersections. We further propose an additional DC biased electrode above the trap which increases the trap depth dramatically, and a novel planar ion trap geometry that generates a two dimensional lattice of point Paul traps.Comment: 11 pages, 20 figure

    Current and Nascent SETI Instruments in the Radio and Optical

    Get PDF
    Here we describe our ongoing efforts to develop high-performance and sensitive instrumentation for use in the search for extra-terrestrial intelligence (SETI). These efforts include our recently deployed Search for Extraterrestrial Emissions from Nearby Developed Intelligent Populations Spectrometer (SERENDIP V.v) and two instruments currently under development; the Heterogeneous Radio SETI Spectrometer (HRSS) for SETI observations in the radio spectrum and the Optical SETI Fast Photometer (OSFP) for SETI observations in the optical band. We will discuss the basic SERENDIP V.v instrument design and initial analysis methodology, along with instrument architectures and observation strategies for OSFP and HRSS. In addition, we will demonstrate how these instruments may be built using low-cost, modular components and programmed and operated by students using common languages, e.g. ANSI C

    Conversion of Iodide to Hypoiodous Acid and Iodine in Aqueous Microdroplets Exposed to Ozone

    Get PDF
    Halides are incorporated into aerosol sea spray, where they start the catalytic destruction of ozone (O3) over the oceans and affect the global troposphere. Two intriguing environmental problems undergoing continuous research are (1) to understand how reactive gas phase molecular halogens are directly produced from inorganic halides exposed to O3 and (2) to constrain the environmental factors that control this interfacial process. This paper presents a laboratory study of the reaction of O3 at variable iodide (I–) concentration (0.010–100 μM) for solutions aerosolized at 25 °C, which reveal remarkable differences in the reaction intermediates and products expected in sea spray for low tropospheric [O3]. The ultrafast oxidation of I– by O3 at the air–water interface of microdroplets is evidenced by the appearance of hypoiodous acid (HIO), iodite (IO2–), iodate (IO3–), triiodide (I3–), and molecular iodine (I2). Mass spectrometry measurements reveal an enhancement (up to 28%) in the dissolution of gaseous O3 at the gas–liquid interface when increasing the concentration of NaI or NaBr from 0.010 to 100 μM. The production of iodine species such as HIO and I2 from NaI aerosolized solutions exposed to 50 ppbv O3 can occur at the air–water interface of sea spray, followed by their transfer to the gas-phase, where they contribute to the loss of tropospheric ozone

    Interaction of enamel matrix proteins with human periodontal ligament cells

    Get PDF
    Dorothy Hodgkin Postgraduate Award for research studies (jointly funded by the Engineering and Physical Sciences Research Council, UK, and by Institut Straumann) and the Research Discretionary Funds of the Periodontology Unit, UCL Eastman Dental Institute. Financial support was also provided by the NIHR Comprehensive Biomedical Research Centre and by the WCU Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. R31-10069)

    Common variants in signaling transcription-factor-binding sites drive phenotypic variability in red blood cell traits

    Get PDF
    Genome-wide association studies identify genomic variants associated with human traits and diseases. Most trait-associated variants are located within cell-type-specific enhancers, but the molecular mechanisms governing phenotypic variation are less well understood. Here, we show that many enhancer variants associated with red blood cell (RBC) traits map to enhancers that are co-bound by lineage-specific master transcription factors (MTFs) and signaling transcription factors (STFs) responsive to extracellular signals. The majority of enhancer variants reside on STF and not MTF motifs, perturbing DNA binding by various STFs (BMP/TGF-β-directed SMADs or WNT-induced TCFs) and affecting target gene expression. Analyses of engineered human blood cells and expression quantitative trait loci verify that disrupted STF binding leads to altered gene expression. Our results propose that the majority of the RBC-trait-associated variants that reside on transcription-factor-binding sequences fall in STF target sequences, suggesting that the phenotypic variation of RBC traits could stem from altered responsiveness to extracellular stimuli

    Multi-ancestry meta-analysis of tobacco use disorder prioritizes novel candidate risk genes and reveals associations with numerous health outcomes

    Get PDF
    Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world. Genetic factors influence smoking behaviors, and although strides have been made using genome-wide association studies (GWAS) to identify risk variants, the majority of variants identified have been for nicotine consumption, rather than TUD. We leveraged five biobanks to perform a multi-ancestral meta-analysis of TUD (derived via electronic health records, EHR) in 898,680 individuals (739,895 European, 114,420 African American, 44,365 Latin American). We identified 88 independent risk loci; integration with functional genomic tools uncovered 461 potential risk genes, primarily expressed in the brain. TUD was genetically correlated with smoking and psychiatric traits from traditionally ascertained cohorts, externalizing behaviors in children, and hundreds of medical outcomes, including HIV infection, heart disease, and pain. This work furthers our biological understanding of TUD and establishes EHR as a source of phenotypic information for studying the genetics of TUD

    Nearly Perfect Fluidity: From Cold Atomic Gases to Hot Quark Gluon Plasmas

    Full text link
    Shear viscosity is a measure of the amount of dissipation in a simple fluid. In kinetic theory shear viscosity is related to the rate of momentum transport by quasi-particles, and the uncertainty relation suggests that the ratio of shear viscosity eta to entropy density s in units of hbar/k_B is bounded by a constant. Here, hbar is Planck's constant and k_B is Boltzmann's constant. A specific bound has been proposed on the basis of string theory where, for a large class of theories, one can show that eta/s is greater or equal to hbar/(4 pi k_B). We will refer to a fluid that saturates the string theory bound as a perfect fluid. In this review we summarize theoretical and experimental information on the properties of the three main classes of quantum fluids that are known to have values of eta/s that are smaller than hbar/k_B. These fluids are strongly coupled Bose fluids, in particular liquid helium, strongly correlated ultracold Fermi gases, and the quark gluon plasma. We discuss the main theoretical approaches to transport properties of these fluids: kinetic theory, numerical simulations based on linear response theory, and holographic dualities. We also summarize the experimental situation, in particular with regard to the observation of hydrodynamic behavior in ultracold Fermi gases and the quark gluon plasma.Comment: 76 pages, 11 figures, review article, extensive revision

    The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes.

    Get PDF
    addresses: Institute of Biomedical and Clinical Sciences, Peninsula Medical School, Plymouth, UK.The final publication is available at link.springer.com/article/10.1007%2Fs00125-009-1276-0Evidence that the beta cells of human patients with type 1 diabetes can be infected with enterovirus is accumulating, but it remains unclear whether such infections occur at high frequency and are important in the disease process. We have now assessed the prevalence of enteroviral capsid protein vp1 (vp1) staining in a large cohort of autopsy pancreases of recent-onset type 1 diabetic patients and a range of controls
    corecore