50 research outputs found

    Ring-current maps for benzenoids : comparisons, contradictions, and a versatile combinatorial model

    Get PDF
    As a key diagnostic property of benzenoids and other polycyclic hydrocarbons, induced ring current has inspired diverse approaches for calculation, modeling, and interpretation. Grid-based methods include the ipsocentric ab initio calculation of current maps, and its surrogate, the pseudo-π model. Graph-based models include a family of conjugated-circuit (CC) models and the molecular-orbital Hückel-London (HL) model. To assess competing claims for physical relevance of derived current maps for benzenoids, a protocol for graph-reduction and comparison was devised. Graph reduction of pseudo-π grid maps highlights their overall similarity to HL maps, but also reveals systematic differences. These are ascribed to unavoidable pseudo-π proximity limitations for benzenoids with short nonbonded distances, and to poor continuity of pseudo-π current for classes of benzenoids with fixed bonds, where single-reference methods can be unreliable. Comparison between graph-based approaches shows that the published CC models all shadow HL maps reasonably well for most benzenoids (as judged by L1-, L2-, and L∞-error norms on scaled bond currents), though all exhibit physically implausible currents for systems with fixed bonds. These comparisons inspire a new combinatorial model (Model W) based on cycle decomposition of current, taking into account the two terms of lowest order that occur in the characteristic polynomial. This improves on all pure-CC models within their range of applicability, giving excellent adherence to HL maps for all Kekulean benzenoids, including those with fixed bonds (halving the rms discrepancy against scaled HL bond currents, from 11% in the best CC model, to 5% for the set of 18 360 Kekulean benzenoids on up to 10 hexagonal rings). Model W also has excellent performance for open-shell systems, where currents cannot be described at all by pure CC models (4% rms discrepancy against scaled HL bond currents for the 20112 non-Kekulean benzenoids on up to 10 hexagonal rings). Consideration of largest and next-to-largest matchings is a useful strategy for modeling and interpretation of currents in Kekulean and non-Kekulean benzenoids (nanographenes)

    Random and exhaustive generation of permutations and cycles

    Full text link
    In 1986 S. Sattolo introduced a simple algorithm for uniform random generation of cyclic permutations on a fixed number of symbols. This algorithm is very similar to the standard method for generating a random permutation, but is less well known. We consider both methods in a unified way, and discuss their relation with exhaustive generation methods. We analyse several random variables associated with the algorithms and find their grand probability generating functions, which gives easy access to moments and limit laws.Comment: 9 page

    Optimal network topologies: Expanders, Cages, Ramanujan graphs, Entangled networks and all that

    Full text link
    We report on some recent developments in the search for optimal network topologies. First we review some basic concepts on spectral graph theory, including adjacency and Laplacian matrices, and paying special attention to the topological implications of having large spectral gaps. We also introduce related concepts as ``expanders'', Ramanujan, and Cage graphs. Afterwards, we discuss two different dynamical feautures of networks: synchronizability and flow of random walkers and so that they are optimized if the corresponding Laplacian matrix have a large spectral gap. From this, we show, by developing a numerical optimization algorithm that maximum synchronizability and fast random walk spreading are obtained for a particular type of extremely homogeneous regular networks, with long loops and poor modular structure, that we call entangled networks. These turn out to be related to Ramanujan and Cage graphs. We argue also that these graphs are very good finite-size approximations to Bethe lattices, and provide almost or almost optimal solutions to many other problems as, for instance, searchability in the presence of congestion or performance of neural networks. Finally, we study how these results are modified when studying dynamical processes controlled by a normalized (weighted and directed) dynamics; much more heterogeneous graphs are optimal in this case. Finally, a critical discussion of the limitations and possible extensions of this work is presented.Comment: 17 pages. 11 figures. Small corrections and a new reference. Accepted for pub. in JSTA

    An Alternative Interpretation of Statistical Mechanics

    Get PDF
    In this paper I propose an interpretation of classical statistical mechanics that centers on taking seriously the idea that probability measures represent complete states of statistical mechanical systems. I show how this leads naturally to the idea that the stochasticity of statistical mechanics is associated directly with the observables of the theory rather than with the microstates (as traditional accounts would have it). The usual assumption that microstates are representationally significant in the theory is therefore dispensable, a consequence which suggests interesting possibilities for developing non-equilibrium statistical mechanics and investigating inter-theoretic answers to the foundational questions of statistical mechanics

    Realism about the Wave Function

    Get PDF
    A century after the discovery of quantum mechanics, the meaning of quantum mechanics still remains elusive. This is largely due to the puzzling nature of the wave function, the central object in quantum mechanics. If we are realists about quantum mechanics, how should we understand the wave function? What does it represent? What is its physical meaning? Answering these questions would improve our understanding of what it means to be a realist about quantum mechanics. In this survey article, I review and compare several realist interpretations of the wave function. They fall into three categories: ontological interpretations, nomological interpretations, and the \emph{sui generis} interpretation. For simplicity, I will focus on non-relativistic quantum mechanics.Comment: Penultimate version for Philosophy Compas

    Solving the measurement problem: de Broglie-Bohm loses out to Everett

    Get PDF
    The quantum theory of de Broglie and Bohm solves the measurement problem, but the hypothetical corpuscles play no role in the argument. The solution finds a more natural home in the Everett interpretation.Comment: 20 pages; submitted to special issue of Foundations of Physics, in honour of James T. Cushin

    Subjectivists about Quantum Probabilities Should be Realists about Quantum States

    Get PDF
    There is a significant body of literature, which includes Itamar Pitowksy's "Betting on Outcomes of Measurements," that sheds light on the structure of quantum mechanics, and the ways in which it differs from classical mechanics, by casting the theory in terms of agents' bets on the outcomes of experiments. Though this approach, by itself, is neutral as to the ontological status of quantum observables and quantum states, some, notably those who adopt the label ``QBism'' for their views, take this approach as providing incentive to conclude that quantum states represent nothing in physical reality, but, rather, merely encode an agent's beliefs. In this chapter, I will argue that the arguments for realism about quantum states go through when the probabilities involved are taken to be subjective, if the conclusion is about the agent's beliefs: an agent whose credences conform to quantum probabilities should believe that preparation procedures with which she associates distinct pure quantum states produce distinct states of reality. The conclusion can be avoided only by stipulation of limitations on the agent's theorizing about the world, limitations that are not warranted by the empirical success of quantum mechanics or any other empirical considerations. Subjectivists about quantum probabilities should be realists about quantum states

    Models of wave-function collapse, underlying theories, and experimental tests

    No full text
    We describe the state of the art in preparing, manipulating and detecting coherent molecular matter. We focus on experimental methods for handling the quantum motion of compound systems from diatomic molecules to clusters or biomolecules.Molecular quantum optics offers many challenges and innovative prospects: already the combination of two atoms into one molecule takes several well-established methods from atomic physics, such as for instance laser cooling, to their limits. The enormous internal complexity that arises when hundreds or thousands of atoms are bound in a single organic molecule, cluster or nanocrystal provides a richness that can only be tackled by combining methods from atomic physics, chemistry, cluster physics, nanotechnology and the life sciences.We review various molecular beam sources and their suitability for matter-wave experiments. We discuss numerous molecular detection schemes and give an overview over diffraction and interference experiments that have already been performed with molecules or clusters.Applications of de Broglie studies with composite systems range from fundamental tests of physics up to quantum-enhanced metrology in physical chemistry, biophysics and the surface sciences.Nanoparticle quantum optics is a growing field, which will intrigue researchers still for many years to come. This review can, therefore, only be a snapshot of a very dynamical process

    A New Class of Safe Oligosaccharide Polymer Therapy To Modify the Mucus Barrier of Chronic Respiratory Disease

    Get PDF
    The host- and bacteria-derived extracellular polysaccharide coating of the lung is a considerable challenge in chronic respiratory disease and is a powerful barrier to effective drug delivery. A low molecular weight 12–15-mer alginate oligosaccharide (OligoG CF-5/20), derived from plant biopolymers, was shown to modulate the polyanionic components of this coating. Molecular modeling and Fourier transform infrared spectroscopy demonstrated binding between OligoG CF-5/20 and respiratory mucins. Ex vivo studies showed binding induced alterations in mucin surface charge and porosity of the three-dimensional mucin networks in cystic fibrosis (CF) sputum. Studies in Humans showed that OligoG CF-5/20 is safe for inhalation in CF patients with effective lung deposition and modifies the viscoelasticity of CF-sputum. OligoG CF-5/20 is the first inhaled polymer therapy, represents a novel mechanism of action and therapeutic approach for the treatment of chronic respiratory disease, and is currently in Phase IIb clinical trials for the treatment of CF

    The unexpected resurgence of Weyl geometry in late 20-th century physics

    Full text link
    Weyl's original scale geometry of 1918 ("purely infinitesimal geometry") was withdrawn by its author from physical theorizing in the early 1920s. It had a comeback in the last third of the 20th century in different contexts: scalar tensor theories of gravity, foundations of gravity, foundations of quantum mechanics, elementary particle physics, and cosmology. It seems that Weyl geometry continues to offer an open research potential for the foundations of physics even after the turn to the new millennium.Comment: Completely rewritten conference paper 'Beyond Einstein', Mainz Sep 2008. Preprint ELHC (Epistemology of the LHC) 2017-02, 92 pages, 1 figur
    corecore