30 research outputs found

    Anticipated impact of the 2009 Four Corners raid and arrests

    Full text link
    Archaeological looting on United States federal land has been illegal for over a century. Regardless, the activity has continued in the Four Corners region. This paper discusses how the 1979 Archaeological Resources Protection Act (ARPA) can be viewed as sumptuary law, and within a sumptuary context, subversion can be anticipated. An analysis of 1986 and June 2009 federal raids in the Four Corners will exemplify this point by identifying local discourses found in newspapers both before and after each raid, which demonstrate a sumptuary effect. Ultimately, this paper concludes that looting just adapted, rather than halted, after each federal raid and that understanding this social context of continued local justification and validation of illegal digging is a potential asset for cultural resource protection

    Hydrometeor‐enhanced tephra sedimentation: Constraints from the 18 May 1980 eruption of Mount St. Helens

    Get PDF
    Uncertainty remains on the origin of distal mass deposition maxima observed in many recent tephra fall deposits. In this study the link between ash aggregation and the formation of distal mass deposition maxima is investigated through reanalysis of tephra fallout from the Mount St. Helens 18 May 1980 (MSH80) eruption. In addition, we collate all the data needed to model distal ash sedimentation from the MSH80 eruption cloud. Four particle size subpopulations were present in distal fallout with modes at 2.2 Φ, 4.2 Φ, 5.9 Φ, and 8.3 Φ. Settling rates of the coarsest subpopulation closely matched predicted single‐particle terminal fall velocities. Sedimentation of particles \u3c100 \u3eμm was greatly enhanced, predominantly through aggregation of a particle subpopulation with modal diameter 5.9 ± 0.2 Φ (19 ± 3 μm). Mammatus on the MSH80 cloud provided a mechanism to transport very fine ash particles, with predicted atmospheric lifetimes of days to weeks, from the upper troposphere to the surface in a matter of hours. In this mechanism, ash particles initiate ice hydrometeor formation high in the troposphere. Subsequently, the volcanic cloud rapidly subsides as mammatus develop from increased particle loading and cloud base sublimation. Rapid fallout occurs as the cloud passes through the melting level in a process analogous to snowflake aggregation. Aggregates sediment en masse and form the distal mass deposition maxima observed in many recent volcanic ash fall deposits. This work provides a data resource that will facilitate tephra sedimentation modeling and allow model intercomparisons

    Assessing Methodologies in Archaeological Ethnography: A Case for Incorporating Ethnographic Training in Graduate Archaeology Curricula

    No full text
    Archaeologists have increasingly turned to ethnography as a tool for understanding the contemporary social context of material culture, archaeological practice, and ‘de-colonizing’ archaeology. Furthermore, ethnographers have turned their analysis to the practice of archaeology, providing insights into key ethical dilemmas. This work has produced significant dialogue, demonstrating the potential for research and collaboration at the interface of two sub-disciplines. However, much of the research to date has relied on a limited range of ethnographic methods. We suggest that archaeologists working in this area would benefit from using a wider repertoire of ethnographic data collection tools and ethics training opportunities. We advocate for greater collaboration between archaeologists and ethnographers and provide suggestions on methods that are well-suited for use in archaeological practice. In the long term, the most effective and far-reaching solution may be to incorporate ethnographic methods training as fundamental to graduate programmes in archaeology

    Quantifying Eruptive and Background Seismicity, Deformation, Degassing, and Thermal Emissions at Volcanoes in the United States During 1978–2020

    No full text
    An important aspect of volcanic hazard assessment is determination of the level and character of background activity at a volcano so that deviations from background (called unrest) can be identified. Here, we compile the instrumentally recorded eruptive and noneruptive activity for 161 US volcanoes between 1978 and 2020. We combine monitoring data from four techniques: seismicity, ground deformation, degassing, and thermal emissions. To previous work, we add the first comprehensive survey of US volcanoes using medium-spatial resolution satellite thermal observations, newly available field surveys of degassing, and new compilations of seismic and deformation data. We report previously undocumented thermal activity at 30 volcanoes using data from the spaceborne ASTER sensor during 2000–2020. To facilitate comparison of activity levels for all US volcanoes, we assign a numerical classification of the Activity Intensity Level for each monitoring technique, with the highest ranking corresponding to an eruption. There are 96 US volcanoes (59%) with at least one type of detected activity, but this represents a lower bound: For example, there are 12 volcanoes where degassing has been observed but has not yet been quantified. We identify dozens of volcanoes where volcanic activity is only measured by satellite (45% of all thermal observations), and other volcanoes where only ground-based sensors have detected activity (e.g., all seismic and 62% of measured degassing observations). Our compilation provides a baseline against which future measurements can be compared, demonstrates the need for both ground-based and remote observations, and serves as a guide for prioritizing future monitoring efforts
    corecore