6,379 research outputs found
Unified Treatment of Quantum Fluctuation Theorem and Jarzynski Equality in Terms of microscopic reversibility
There are two related theorems which hold even in far from equilibrium,
namely fluctuation theorem and Jarzynski equality. Fluctuation theorem states
the existence of symmetry of fluctuation of entropy production, while Jarzynski
equality enables us to estimate the free energy change between two states by
using irreversible processes. On the other hand, relationship between these
theorems was investigated by Crooks for the classical stochastic systems. In
this letter, we derive quantum analogues of fluctuation theorem and Jarzynski
equality microscopic reversibility condition. In other words, the quantum
analogue of the work by Crooks is presented.Comment: 7pages, revised versio
Quantum Kinetic Theory VI: The Growth of a Bose-Einstein Condensate
A detailed analysis of the growth of a BEC is given, based on quantum kinetic
theory, in which we take account of the evolution of the occupations of lower
trap levels, and of the full Bose-Einstein formula for the occupations of
higher trap levels, as well as the Bose stimulated direct transfer of atoms to
the condensate level introduced by Gardiner et al. We find good agreement with
experiment at higher temperatures, but at lower temperatures the experimentally
observed growth rate is somewhat more rapid. We also confirm the picture of the
``kinetic'' region of evolution, introduced by Kagan et al., for the time up to
the initiation of the condensate. The behavior after initiation essentially
follows our original growth equation, but with a substantially increased rate
coefficient.
Our modelling of growth implicitly gives a model of the spatial shape of the
condensate vapor system as the condensate grows, and thus provides an
alternative to the present phenomenological fitting procedure, based on the sum
of a zero-chemical potential vapor and a Thomas-Fermi shaped condensate. Our
method may give substantially different results for condensate numbers and
temperatures obtained from phenomentological fits, and indicates the need for
more systematic investigation of the growth dynamics of the condensate from a
supersaturated vapor.Comment: TeX source; 29 Pages including 26 PostScript figure
Markovian feedback to control continuous variable entanglement
We present a model to realize quantum feedback control of continuous variable
entanglement. It consists of two interacting bosonic modes subject to amplitude
damping and achieving entangled Gaussian steady state. The possibility to
greatly improve the degree of entanglement by means of Markovian (direct)
feedback is then shown.Comment: 4 pages Revtex, new figures, added comment
Quantum turbulence and correlations in Bose-Einstein condensate collisions
We investigate numerically simulated collisions between experimentally
realistic Bose-Einstein condensate wavepackets, within a regime where highly
populated scattering haloes are formed. The theoretical basis for this work is
the truncated Wigner method, for which we present a detailed derivation, paying
particular attention to its validity regime for colliding condensates. This
paper is an extension of our previous Letter [A. A. Norrie, R. J. Ballagh, and
C. W. Gardiner, Phys. Rev. Lett. 94, 040401 (2005)] and we investigate both
single-trajectory solutions, which reveal the presence of quantum turbulence in
the scattering halo, and ensembles of trajectories, which we use to calculate
quantum-mechanical correlation functions of the field
Simulation of complete many-body quantum dynamics using controlled quantum-semiclassical hybrids
A controlled hybridization between full quantum dynamics and semiclassical
approaches (mean-field and truncated Wigner) is implemented for interacting
many-boson systems. It is then demonstrated how simulating the resulting hybrid
evolution equations allows one to obtain the full quantum dynamics for much
longer times than is possible using an exact treatment directly. A collision of
sodium BECs with 1.x10^5 atoms is simulated, in a regime that is difficult to
describe semiclassically. The uncertainty of physical quantities depends on the
statistics of the full quantum prediction. Cutoffs are minimised to a
discretization of the Hamiltonian. The technique presented is quite general and
extension to other systems is considered.Comment: Published version. Broader background and discussion, slightly
shortened, less figures in epaps. Research part unchanged. Article + epaps
(4+4 pages), 8 figure
Quantum turbulence in condensate collisions: an application of the classical field method
We apply the classical field method to simulate the production of correlated
atoms during the collision of two Bose-Einstein condensates. Our
non-perturbative method includes the effect of quantum noise, and provides for
the first time a theoretical description of collisions of high density
condensates with very large out-scattered fractions. Quantum correlation
functions for the scattered atoms are calculated from a single simulation, and
show that the correlation between pairs of atoms of opposite momentum is rather
small. We also predict the existence of quantum turbulence in the field of the
scattered atoms--a property which should be straightforwardly measurable.Comment: 5 pages, 3 figures: Rewritten text, replaced figure
Theory of the Ramsey spectroscopy and anomalous segregation in ultra-cold rubidium
The recent anomalous segregation experiment of Lewandowski et al. (PRL, 88,
070403, 2002) shows dramatic, rapid internal state segregation for two
hyperfine levels of rubidium. We simulate an effective one dimensional model of
the system for experimental parameters and find reasonable agreement with the
data. The Ramsey frequency is found to be insensitive to the decoherence of the
superposition, and is only equivalent to the interaction energy shift for a
pure superposition. A Quantum Boltzmann equation describing collisions is
derived using Quantum Kinetic Theory, taking into account the different
scattering lengths of the internal states. As spin-wave experiments are likely
to be attempted at lower temperatures we examine the effect of degeneracy on
decoherence by considering the recent experiment of Lewandowski et al. where
degeneracy is around 10%. We also find that the segregation effect is only
possible when transport terms are included in the equations of motion, and that
the interactions only directly alter the momentum distributions of the states.
The segregation or spin wave effect is thus entirely due to coherent atomic
motion as foreseen in the experimental reportComment: 26 pages, 4 figures, to be published in J. Phys.
Tripartite entanglement and threshold properties of coupled intracavity downconversion and sum-frequency generation
The process of cascaded downconversion and sum-frequency generation inside an
optical cavity has been predicted to be a potential source of three-mode
continuous-variable entanglement. When the cavity is pumped by two fields, the
threshold properties have been analysed, showing that these are more
complicated than in well-known processes such as optical parametric
oscillation. When there is only a single pumping field, the entanglement
properties have been calculated using a linearised fluctuation analysis, but
without any consideration of the threshold properties or critical operating
points of the system. In this work we extend this analysis to demonstrate that
the singly pumped system demonstrates a rich range of threshold behaviour when
quantisation of the pump field is taken into account and that asymmetric
polychromatic entanglement is available over a wide range of operational
parameters.Comment: 24 pages, 15 figure
- …