657 research outputs found

    Ab initio lattice results for Fermi polarons in two dimensions

    Get PDF
    We investigate the attractive Fermi polaron problem in two dimensions using non-perturbative Monte Carlo simulations. We introduce a new Monte Carlo algorithm called the impurity lattice Monte Carlo method. This algorithm samples the path integral in a computationally efficient manner and has only small sign oscillations for systems with a single impurity. As a benchmark of the method, we calculate the universal polaron energy in three dimensions in the scale-invariant unitarity limit and find agreement with published results. We then present the first fully non-perturbative calculations of the polaron energy in two dimensions and density correlations between the impurity and majority particles in the limit of zero range interactions. We find evidence for a smooth crossover transition from fermionic quasiparticle to molecular state as a function of interaction strength.Comment: Includes new results on density-density correlations. Final version as will appear in Phys. Rev. Let

    Screening cultures for detection of methicillin-resistant Staphylococcus aureus in a population at high risk for MRSA colonisation: identification of optimal combinations of anatomical sites

    Get PDF
    This retrospective study analysed the diagnostic yield of single-site, two-site, and three-site anatomical surveillance cultures in a population of 4,769 patients at high risk for methicillin-resistant Staphylococcus aureus (MRSA) colonisation. Cultures of seven anatomical sites were used as the gold standard against which to measure the sensitivity of MRSA detection. Detection rates for the seven single-sites, 21 two-site, and 35 three-site combinations are presented. Single-site swabbing only detected 50.5% (nose) of total cases, while three-site surveillance achieved a 92% (groin+nose+throat) sensitivity of detection at best. It is recommended that at least three anatomical sites should be screened for MRSA colonisation in these high-risk patients.Keywords: MRSA screening; optimal sensitivity; infection contro

    Benchmark calculations for elastic fermion-dimer scattering

    Get PDF
    We present continuum and lattice calculations for elastic scattering between a fermion and a bound dimer in the shallow binding limit. For the continuum calculation we use the Skorniakov-Ter-Martirosian (STM) integral equation to determine the scattering length and effective range parameter to high precision. For the lattice calculation we use the finite-volume method of L\"uscher. We take into account topological finite-volume corrections to the dimer binding energy which depend on the momentum of the dimer. After subtracting these effects, we find from the lattice calculation kappa a_fd = 1.174(9) and kappa r_fd = -0.029(13). These results agree well with the continuum values kappa a_fd = 1.17907(1) and kappa r_fd = -0.0383(3) obtained from the STM equation. We discuss applications to cold atomic Fermi gases, deuteron-neutron scattering in the spin-quartet channel, and lattice calculations of scattering for nuclei and hadronic molecules at finite volume.Comment: 16 pages, 5 figure

    PMH14 HEALTH CARE EXPENDITURES OF PATIENTS WITH MAJOR DEPRESSIVE DISORDER AND POST TRAUMATIC STRESS DISORDER

    Get PDF
    A computer model is presented that describes soleus H-reflex recruitment as a function of electric stimulus intensity. The model consists of two coupled non-linear transfer functions. The first transfer function describes the activation of muscle spindle (Ia) afferent terminals as a function of the electric stimulus intensity; whereas the second describes the activation of a number of motoneurons as a function of the number of active Ia afferent terminals. The effect of change in these transfer functions on the H-reflex recruitment curve is simulated. In spastic patients, a higher average maximal H-response amplitude is observed in combination with a decreased H-reflex threshold. Vibration of the Achilles tendon reduces the H-reflex amplitude, presumably by reducing the excitatory afferent input. Vibratory inhibition is diminished in spasticity. In the model, the afferent-motoneuron transfer function was modified to represent the possible alterations occurring in spasticity. The simulations show that vibratory suppression of the H-reflex is determined only in part by the inhibition level of the afferent input. With a constant level of presynaptic inhibition, the suppression of reflexes of different sizes may vary. A lowering of the motoneuron activation thresholds in spastic patients will directly contribute to a decrease of vibratory inhibition in spasticit

    Topological phases for bound states moving in a finite volume

    Get PDF
    We show that bound states moving in a finite periodic volume have an energy correction which is topological in origin and universal in character. The topological volume corrections contain information about the number and mass of the constituents of the bound states. These results have broad applications to lattice calculations involving nucleons, nuclei, hadronic molecules, and cold atoms. We illustrate and verify the analytical results with several numerical lattice calculations.Comment: 4 pages, 1 figure, version to appear in Phys. Rev. D Rapid Communication

    Non-relativistic bound states in a finite volume

    Full text link
    We derive general results for the mass shift of bound states with angular momentum l >= 1 in a periodic cubic box in two and three spatial dimensions. Our results have applications to lattice simulations of hadronic molecules, halo nuclei, and Feshbach molecules. The sign of the mass shift can be related to the symmetry properties of the state under consideration. We verify our analytical results with explicit numerical calculations. Moreover, we comment on the relations connecting the effective range parameter, the binding momentum of a given state and the asymptotic normalization coefficient of the corresponding wave function. We give explicit expressions for this relation in the shallow binding limit.Comment: 26 pages, 4 figure

    Coherent instabilities in a semiconductor laser with fast gain recovery

    Get PDF
    We report the observation of a coherent multimode instability in quantum cascade lasers (QCLs), which is driven by the same fundamental mechanism of Rabi oscillations as the elusive Risken-Nummedal-Graham-Haken (RNGH) instability predicted 40 years ago for ring lasers. The threshold of the observed instability is significantly lower than in the original RNGH instability, which we attribute to saturable-absorption nonlinearity in the laser. Coherent effects, which cannot be reproduced by standard laser rate equations, can play therefore a key role in the multimode dynamics of QCLs, and in lasers with fast gain recovery in general.Comment: 5 pages, 4 figure

    Tolerance induction in memory CD4 T cells requires two rounds of antigen-specific activation

    Get PDF
    Autoimmune diseases are driven by immune cells that recognize self-tissues. A major goal for treatment strategies for autoimmune diseases is to turn off or tolerize self-reactive immune cells such as CD4 T cells that coordinate tissue damage in many autoimmune diseases. Autoimmune diseases are often diagnosed many years following their onset. The self-reactive CD4 T cells that must be tolerized, therefore, are previously activated or memory CD4 T cells. Little is known about whether tolerance can be induced in memory CD4 T cells. This paper demonstrates that memory CD4 T cells survive initial exposure to tolerance-inducing signals but that a second activation signal leads to cell death. This study has important implications for immunotherapeutic strategies for autoimmune diseases

    A novel myelin P0–specific T cell receptor transgenic mouse develops a fulminant autoimmune peripheral neuropathy

    Get PDF
    Autoimmune-prone nonobese diabetic mice deficient for B7-2 spontaneously develop an autoimmune peripheral neuropathy mediated by inflammatory CD4+ T cells that is reminiscent of Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy. To determine the etiology of this disease, CD4+ T cell hybridomas were generated from inflamed tissue–derived CD4+ T cells. A majority of T cell hybridomas were specific for myelin protein 0 (P0), which was the principal target of autoantibody responses targeting nerve proteins. To determine whether P0-specific T cell responses were sufficient to mediate disease, we generated a novel myelin P0–specific T cell receptor transgenic (POT) mouse. POT T cells were not tolerized or deleted during thymic development and proliferated in response to P0 in vitro. Importantly, when bred onto a recombination activating gene knockout background, POT mice developed a fulminant form of peripheral neuropathy that affected all mice by weaning age and led to their premature death by 3–5 wk of age. This abrupt disease was associated with the production of interferon γ by P0-specific T cells and a lack of CD4+ Foxp3+ regulatory T cells. Collectively, our data suggest that myelin P0 is a major autoantigen in autoimmune peripheral neuropathy

    Target Displacements during Eye Blinks Trigger Automatic Recalibration of Gaze Direction

    Get PDF
    Eye blinks cause disruptions to visual input and are accompanied by rotations of the eyeball [1]. Like every motor action, these eye movements are subject to noise and introduce instabilities in gaze direction across blinks [2]. Accumulating errors across repeated blinks would be debilitating for visual performance. Here, we show that the oculomotor system constantly recalibrates gaze direction during blinks to counteract gaze instability. Observers were instructed to fixate a visual target while gaze direction was recorded and blinks were detected in real time. With every spontaneous blink-while eyelids were closed-the target was displaced laterally by 0.5° (or 1.0°). Most observers reported being unaware of displacements during blinks. After adapting for ∼35 blinks, gaze positions after blinks showed significant biases toward the new target position. Automatic eye movements accompanied each blink, and an aftereffect persisted for a few blinks after target displacements were eliminated. No adaptive gaze shift occurred when blinks were simulated with shutter glasses at random time points or actively triggered by observers, or when target displacements were masked by a distracting stimulus. Visual signals during blinks are suppressed by inhibitory mechanisms [3-6], so that small changes across blinks are generally not noticed [7, 8]. Additionally, target displacements during blinks can trigger automatic gaze recalibration, similar to the well-known saccadic adaptation effect [9-11]. This novel mechanism might be specific to the maintenance of gaze direction across blinks or might depend on a more general oculomotor recalibration mechanism adapting gaze position during intrinsically generated disruptions to visual input
    • …
    corecore