336 research outputs found
Electron Microprobe Analysis of Electrolytes in Whole Cultured Epithelial Cells
Microprobe analysis was used to determine electrolyte contents in whole epithelial sheets of A6 cells and to investigate the most critical points of this method. Analysis of dextran standard sections of different thickness revealed that low accelerating voltages of about 10 kV are best suited for whole freeze-dried cells on thick supports, since 5 μm thick sections are not penetrated by 10 kV electrons. Washing of A6 cells for 10 sec with distilled water led to cell swelling of about 40%, but the molar concentration ratios and the concentrations per dry weight (dw) were not altered. Washing for 60 sec with distilled water caused a further increase in cell volume (120%) and loss of cellular K and Cl (90 mmol/kg dw). Washing with isotonic NH4-acetate led to a loss of cell Cl already after 10 sec.
To characterize the Na transport compartment, A6 cells cultured on permeable supports were washed for 5 sec with distilled water, freeze-dried, and analyzed. Inhibition of transepithelial Na transport by ouabain increased Na/P from 0.15±0.07 to 0.75±0.03 and Cl/P from 0.21±0.001 to 0.38±0.003 while KIP decreased from 0.83±0.08 to 0.32±0.03. The changes in cell Na and K contents can be explained by K/Na exchange; the increase in Cl content indicates some cell swelling. Since the ouabain-induced changes could be prevented by apical amiloride, the apical membrane provides the most important pathway for Na entry in A6 cells
Recognition of Clostridium difficile PCR-ribotypes 001, 027 and 126/078 using an extended MALDI-TOF MS system
During the last decade, Clostridium difficile infection (CDI) increased markedly inside as well as outside of hospitals. In association with the occurrence of new hypervirulent C. difficile strains, CDI became more important. Until now typing of C. difficile strains has been enabled by PCR-ribotyping. However, this method is restricted to specialized laboratories combined with high maintenance cost. Therefore, we tested MALDI-TOF mass spectrometry for typing of C. difficile to provide a fast method for surveillance of CDI. Using a standard set of 25 different C. difficile PCR ribotypes a database was made by different mass spectra recorded in the SARAMISâ„¢ software (AnagnosTec, Zossen, Germany). The database was validated with 355 C. difficile strains belonging to 29 different PCR ribotypes collected prospectively from all submitted feces samples in 2009. The most frequent PCR ribotypes were type 001 (70%), 027 (4.8%) and 078/126 (4.7%). All three types were recognized by MALDI-TOF MS. We conclude that an extended MALDI-TOF system was capable to recognize specific markers for ribotypes 001, 027 and 078/126 allowing an effective identification of these strains
BRCA1 mislocalization leads to aberrant DNA damage response in heterozygous ABRAXAS1 mutation carrier cells
Peer reviewe
Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world's marine ecosystems
Existing estimates of fish and consumer biomass in the world’s oceans are disparate. This creates uncertainty about the roles of fish and other consumers in biogeochemical cycles and ecosystem processes, the extent of human and environmental impacts and fishery potential. We develop and use a size-based macroecological model to assess the effects of parameter uncertainty on predicted consumer biomass, production and distribution. Resulting uncertainty is large (e.g. median global biomass 4.9 billion tonnes for consumers weighing 1 g to 1000 kg; 50% uncertainty intervals of 2 to 10.4 billion tonnes; 90% uncertainty intervals of 0.3 to 26.1 billion tonnes) and driven primarily by uncertainty in trophic transfer efficiency and its relationship with predator-prey body mass ratios. Even the upper uncertainty intervals for global predictions of consumer biomass demonstrate the remarkable scarcity of marine consumers, with less than one part in 30 million by volume of the global oceans comprising tissue of macroscopic animals. Thus the apparently high densities of marine life seen in surface and coastal waters and frequently visited abundance hotspots will likely give many in society a false impression of the abundance of marine animals. Unexploited baseline biomass predictions from the simple macroecological model were used to calibrate a more complex size- and trait-based model to estimate fisheries yield and impacts. Yields are highly dependent on baseline biomass and fisheries selectivity. Predicted global sustainable fisheries yield increases ≈4 fold when smaller individuals (< 20 cm from species of maximum mass < 1kg) are targeted in all oceans, but the predicted yields would rarely be accessible in practice and this fishing strategy leads to the collapse of larger species if fishing mortality rates on different size classes cannot be decoupled. Our analyses show that models with minimal parameter demands that are based on a few established ecological principles can support equitable analysis and comparison of diverse ecosystems. The analyses provide insights into the effects of parameter uncertainty on global biomass and production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented. Consequently, our simple models become increasingly less useful than more complex alternatives when addressing questions about food web structure and function, biodiversity, resilience and human impacts at smaller scales and for areas closer to coasts
Condensin I Recruitment to Base Damage-Enriched DNA Lesions Is Modulated by PARP1
Condensin I is important for chromosome organization and segregation in mitosis. We previously showed that condensin I also interacts with PARP1 in response to DNA damage and plays a role in single-strand break repair. However, whether condensin I physically associates with DNA damage sites and how PARP1 may contribute to this process were unclear. We found that condensin I is preferentially recruited to DNA damage sites enriched for base damage. This process is dictated by PARP1 through its interaction with the chromosome-targeting domain of the hCAP-D2 subunit of condensin I
Dao, harmony and personhood: towards a Confucian ethics of technology
A closer look at the theories and questions in philosophy of technology and ethics of technology shows the absence and marginality of non-Western philosophical traditions in the discussions. Although, increasingly, some philosophers have sought to introduce non-Western philosophical traditions into the debates, there are few systematic attempts to construct and articulate general accounts of ethics and technology based on other philosophical traditions. This situation is understandable, for the questions of modern sciences and technologies appear to be originated from the West; at the same time, the situation is undesirable. The overall aim of this paper, therefore, is to introduce an alternative account of ethics of technology based on the Confucian tradition. In doing so, it is hoped that the current paper can initiate a relatively uncharted field in philosophy of technology and ethics of technology
A better life through information technology? The techno-theological eschatology of posthuman speculative science
This is the pre-peer reviewed version of the article, published in Zygon 41(2) pp.267-288, which has been published in final form at http://www3.interscience.wiley.com/journal/118588124/issueThe depiction of human identity in the pop-science futurology of engineer/inventor Ray Kurzweil, the speculative-robotics of Carnegie Mellon roboticist Hans Moravec and the physics of Tulane University mathematics professor Frank Tipler elevate technology, especially information technology, to a point of ultimate significance. For these three figures, information technology offers the potential means by which the problem of human and cosmic finitude can be rectified. Although Moravec’s vision of intelligent robots, Kurzweil’s hope for immanent human immorality, and Tipler’s description of human-like von Neumann probe colonising the very material fabric of the universe, may all appear to be nothing more than science fictional musings, they raise genuine questions as to the relationship between science, technology, and religion as regards issues of personal and cosmic eschatology. In an attempt to correct what I see as the ‘cybernetic-totalism’ inherent in these ‘techno-theologies’, I will argue for a theology of technology, which seeks to interpret technology hermeneutically and grounds human creativity in the broader context of divine creative activity
Hierarchy of nonhomologous end-joining, single-strand annealing and gene conversion at site-directed DNA double-strand breaks
In mammalian cells, DNA double-strand breaks (DSBs) are repaired by three pathways, nonhomologous end-joining (NHEJ), gene conversion (GC) and single-strand annealing (SSA). These pathways are distinct with regard to repair efficiency and mutagenic potential and must be tightly controlled to preserve viability and genomic stability. Here, we employed chromosomal reporter constructs to characterize the hierarchy of NHEJ, GC and SSA at a single I-SceI-induced DSB in Chinese hamster ovary cells. We discovered that the use of GC and SSA was increased by 6- to 8-fold upon loss of Ku80 function, suggesting that NHEJ is dominant over the other two pathways. However, NHEJ efficiency was not altered if GC was impaired by Rad51 knockdown. Interestingly, when SSA was made available as an alternative mode for DSB repair, loss of Rad51 function led to an increase in SSA activity at the expense of NHEJ, implying that Rad51 may indirectly promote NHEJ by limiting SSA. We conclude that a repair hierarchy exists to limit the access of the most mutagenic mechanism, SSA, to the break site. Furthermore, the cellular choice of repair pathways is reversible and can be influenced at the level of effector proteins such as Ku80 or Rad51
E-readers and the death of the book: or, new media and the myth of the disappearing medium
The recent emergence of e-readers and e-books has b
rought the death of the book to the centre of
current debates on new media. In this article, we a
nalyse alternative narratives that surround the
possibility of the disappearance of print books, do
minated by fetishism, fears about the end of
humanism, and ideas of techno-fundamentalist progre
ss. We argue that, in order to comprehend
such narratives, we need to inscribe them in the br
oader history of media. The emergence of new
media, in fact, has often been accompanied by narra
tives about the possible disappearance of
older media: the introduction of television, for in
stance, inspired claims about the forthcoming
death of film and radio. As a recurrent narrative s
haping the reception of media innovation, the
myth of the disappearing medium helps us to make se
nse of the transformations that media
change provokes in our everyday life
The protective effect of tumor necrosis factor-alpha inhibitors in COVID-19 in patients with inflammatory rheumatic diseases compared to the general population: a comparison of two German registries
Objectives: To investigate, whether inflammatory rheumatic diseases (IRD) inpatients are at higher risk to develop a severe course of SARS-CoV-2 infections compared to the general population, data from the German COVID-19 registry for IRD patients and data from the Lean European Survey on SARS-CoV-2 (LEOSS) infected patients covering inpatients from the general population with SARS-CoV-2 infections were compared.
Methods: 4310 (LEOSS registry) and 1139 cases (IRD registry) were collected in general. Data were matched for age and gender. From both registries, 732 matched inpatients (LEOSS registry: n = 366 and IRD registry: n = 366) were included for analyses in total.
Results: Regarding the COVID-19 associated lethality, no significant difference between both registries was observed. Age > 65°years, chronic obstructive pulmonary disease, diabetes mellitus, rheumatoid arthritis, spondyloarthritis and the use of rituximab were associated with more severe courses of COVID-19. Female gender and the use of tumor necrosis factor-alpha inhibitors (TNF-I) were associated with a better outcome of COVID-19.
Conclusion: Inflammatory rheumatic diseases (IRD) patients have the same risk factors for severe COVID-19 regarding comorbidities compared to the general population without any immune-mediated disease or immunomodulation. The use of rituximab was associated with an increased risk for severe COVID-19. On the other hand, the use of TNF-I was associated with less severe COVID-19 compared to the general population, which might indicate a protective effect of TNF-I against severe COVID-19 disease
- …