5,230 research outputs found

    Hidden SUSY at the LHC: the light higgsino-world scenario and the role of a lepton collider

    Get PDF
    While the SUSY flavor, CP and gravitino problems seem to favor a very heavy spectrum of matter scalars, fine-tuning in the electroweak sector prefers low values of superpotential mass \mu. In the limit of low \mu, the two lightest neutralinos and light chargino are higgsino-like. The light charginos and neutralinos may have large production cross sections at LHC, but since they are nearly mass degenerate, there is only small energy release in three-body sparticle decays. Possible dilepton and trilepton signatures are difficult to observe after mild cuts due to the very soft p_T spectrum of the final state isolated leptons. Thus, the higgsino-world scenario can easily elude standard SUSY searches at the LHC. It should motivate experimental searches to focus on dimuon and trimuon production at the very lowest p_T(\mu) values possible. If the neutralino relic abundance is enhanced via non-standard cosmological dark matter production, then there exist excellent prospects for direct or indirect detection of higgsino-like WIMPs. While the higgsino-world scenario may easily hide from LHC SUSY searches, a linear e^+e^- collider or a muon collider operating in the \sqrt{s}\sim 0.5-1 TeV range would be able to easily access the chargino and neutralino pair production reactions.Comment: 20 pages including 12 .eps figure

    The Zieschang-McCool method for generating algebraic mapping-class groups

    Full text link
    Let g and p be non-negative integers. Let A(g,p) denote the group consisting of all those automorphisms of the free group on {t_1,...,t_p, x_1,...,x_g, y_1,...y_g} which fix the element t_1t_2...t_p[x_1,y_1]...[x_g,y_g] and permute the set of conjugacy classes {[t_1],....,[t_p]}. Labru\`ere and Paris, building on work of Artin, Magnus, Dehn, Nielsen, Lickorish, Zieschang, Birman, Humphries, and others, showed that A(g,p) is generated by a set that is called the ADLH set. We use methods of Zieschang and McCool to give a self-contained, algebraic proof of this result. Labru\`ere and Paris also gave defining relations for the ADLH set in A(g,p); we do not know an algebraic proof of this for g > 1. Consider an orientable surface S(g,p) of genus g with p punctures, such that (g,p) is not (0,0) or (0,1). The algebraic mapping-class group of S(g,p), denoted M(g,p), is defined as the group of all those outer automorphisms of the one-relator group with generating set {t_1,...,t_p, x_1,...,x_g, y_1,...y_g} and relator t_1t_2...t_p[x_1,y_1]...[x_g,y_g] which permute the set of conjugacy classes {[t_1],....,[t_p]}. It now follows from a result of Nielsen that M(g,p) is generated by the image of the ADLH set together with a reflection. This gives a new way of seeing that M(g,p) equals the (topological) mapping-class group of S(g,p), along lines suggested by Magnus, Karrass, and Solitar in 1966.Comment: 21 pages, 0 figure

    Mixed Higgsino Dark Matter from a Large SU(2) Gaugino Mass

    Full text link
    We observe that in SUSY models with non-universal GUT scale gaugino mass parameters, raising the GUT scale SU(2) gaugino mass |M_2| from its unified value results in a smaller value of -m_{H_u}^2 at the weak scale. By the electroweak symmetry breaking conditions, this implies a reduced value of \mu^2 {\it vis \`a vis} models with gaugino mass unification. The lightest neutralino can then be mixed Higgsino dark matter with a relic density in agreement with the measured abundance of cold dark matter (DM). We explore the phenomenology of this high |M_2| DM model. The spectrum is characterized by a very large wino mass and a concomitantly large splitting between left- and right- sfermion masses. In addition, the lighter chargino and three light neutralinos are relatively light with substantial higgsino components. The higgsino content of the LSP implies large rates for direct detection of neutralino dark matter, and enhanced rates for its indirect detection relative to mSUGRA. We find that experiments at the LHC should be able to discover SUSY over the portion of parameter space where m_{\tg} \alt 2350-2750 ~GeV, depending on the squark mass, while a 1 TeV electron-positron collider has a reach comparable to that of the LHC. The dilepton mass spectrum in multi-jet + \ell^+\ell^- + \eslt events at the LHC will likely show more than one mass edge, while its shape should provide indirect evidence for the large higgsino content of the decaying neutralinos.Comment: 36 pages with 26 eps figure

    The Reach of the Fermilab Tevatron and CERN LHC for Gaugino Mediated SUSY Breaking Models

    Get PDF
    In supersymmetric models with gaugino mediated SUSY breaking (inoMSB), it is assumed that SUSY breaking on a hidden brane is communicated to the visible brane via gauge superfields which propagate in the bulk. This leads to GUT models where the common gaugino mass m1/2m_{1/2} is the only soft SUSY breaking term to receive contributions at tree level. To obtain a viable phenomenology, it is assumed that the gaugino mass is induced at some scale McM_c beyond the GUT scale, and that additional renormalization group running takes place between McM_c and MGUTM_{GUT} as in a SUSY GUT. We assume an SU(5) SUSY GUT above the GUT scale, and compute the SUSY particle spectrum expected in models with inoMSB. We use the Monte Carlo program ISAJET to simulate signals within the inoMSB model, and compute the SUSY reach including cuts and triggers approriate to Fermilab Tevatron and CERN LHC experiments. We find no reach for SUSY by the Tevatron collider in the trilepton channel. %either with or without %identified tau leptons. At the CERN LHC, values of m1/2=1000m_{1/2}=1000 (1160) GeV can be probed with 10 (100) fb1^{-1} of integrated luminosity, corresponding to a reach in terms of mtgm_{\tg} of 2150 (2500) GeV. The inoMSB model and mSUGRA can likely only be differentiated at a linear e+ee^+e^- collider with sufficient energy to produce sleptons and charginos.Comment: 17 page revtex file with 9 PS figure

    Non-critical String Cosmologies

    Full text link
    Non-critical String Cosmologies are offered as an alternative to Standard Big Bang Cosmology. The new features encompassed within the dilaton dependent non-critical terms affect the dynamics of the Universe\'s evolution in an unconventional manner being in agreement with the cosmological data. Non-criticality is responsible for a late transition to acceleration at redshifts z=0.2. The role of the uncoupled rolling dilaton to relic abundance calculations is discussed. The uncoupled rolling dilaton dilutes the neutralino relic densities in supersymmetric theories by factors of ten, relaxing considerably the severe WMAP Dark Matter constraints, while at the same time leaves almost unaffected the baryon density in agreement with primordial Nucleosynthesis.Comment: 16 pages, 7 figures, conference tal

    Testing the gaugino AMSB model at the Tevatron via slepton pair production

    Full text link
    Gaugino AMSB models-- wherein scalar and trilinear soft SUSY breaking terms are suppressed at the GUT scale while gaugino masses adopt the AMSB form-- yield a characteristic SUSY particle mass spectrum with light sleptons along with a nearly degenerate wino-like lightest neutralino and quasi-stable chargino. The left- sleptons and sneutrinos can be pair produced at sufficiently high rates to yield observable signals at the Fermilab Tevatron. We calculate the rate for isolated single and dilepton plus missing energy signals, along with the presence of one or two highly ionizing chargino tracks. We find that Tevatron experiments should be able to probe gravitino masses into the ~55 TeV range for inoAMSB models, which corresponds to a reach in gluino mass of over 1100 GeV.Comment: 14 pages including 6 .eps figure

    Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar

    Full text link
    The minimal supergravity (mSUGRA or CMSSM) model is an oft-used framework for exhibiting the properties of neutralino (WIMP) cold dark matter (CDM). However, the recent evidence from Atlas and CMS on a light Higgs scalar with mass m_h\simeq 125 GeV highly constrains the superparticle mass spectrum, which in turn constrains the neutralino annihilation mechanisms in the early universe. We find that stau and stop co-annihilation mechanisms -- already highly stressed by the latest Atlas/CMS results on SUSY searches -- are nearly eliminated if indeed the light Higgs scalar has mass m_h\simeq 125 GeV. Furthermore, neutralino annihilation via the A-resonance is essentially ruled out in mSUGRA so that it is exceedingly difficult to generate thermally-produced neutralino-only dark matter at the measured abundance. The remaining possibility lies in the focus-point region which now moves out to m_0\sim 10-20 TeV range due to the required large trilinear soft SUSY breaking term A_0. The remaining HB/FP region is more fine-tuned than before owing to the typically large top squark masses. We present updated direct and indirect detection rates for neutralino dark matter, and show that ton scale noble liquid detectors will either discover mixed higgsino CDM or essentially rule out thermally-produced neutralino-only CDM in the mSUGRA model.Comment: 17 pages including 9 .eps figure

    Target dark matter detection rates in models with a well-tempered neutralino

    Get PDF
    In the post-LEP2 era, and in light of recent measurements of the cosmic abundance of cold dark matter (CDM) in the universe from WMAP, many supersymmetric models tend to predict 1. an overabundance of CDM and 2. pessimistically low rates for direct detection of neutralino dark matter. However, in models with a ``well-tempered neutralino'', where the neutralino composition is adjusted to give the measured abundance of CDM, the neutralino is typically of the mixed bino-wino or mixed bino-higgsino state. Along with the necessary enhancement to neutralino annihilation rates, these models tend to give elevated direct detection scattering rates compared to predictions from SUSY models with universal soft breaking terms. We present neutralino direct detection cross sections from a variety of models containing a well-tempered neutralino, and find cross section asymptotes with detectable scattering rates. These asymptotic rates provide targets that various direct CDM detection experiments should aim for. In contrast, in models where the neutralino mass rather than its composition is varied to give the WMAP relic density via either resonance annihilation or co-annihilation, the neutralino remains essentially bino-like, and direct detection rates may be below the projected reaches of all proposed experiments.Comment: 13 pages including 1 EPS figur

    Exploring the BWCA (Bino-Wino Co-Annihilation) Scenario for Neutralino Dark Matter

    Get PDF
    In supersymmetric models with non-universal gaugino masses, it is possible to have opposite-sign SU(2) and U(1) gaugino mass terms. In these models, the gaugino eigenstates experience little mixing so that the lightest SUSY particle remains either pure bino or pure wino. The neutralino relic density can only be brought into accord with the WMAP measured value when bino-wino co-annihilation (BWCA) acts to enhance the dark matter annihilation rate. We map out parameter space regions and mass spectra which are characteristic of the BWCA scenario. Direct and indirect dark matter detection rates are shown to be typically very low. At collider experiments, the BWCA scenario is typified by a small mass gap m_{\tilde Z_2}-m_{\tilde Z_1} ~ 20-80 GeV, so that tree level two body decays of \tilde Z_2 are not allowed. However, in this case the second lightest neutralino has an enhanced loop decay branching fraction to photons. While the photonic neutralino decay signature looks difficult to extract at the Fermilab Tevatron, it should lead to distinctive events at the CERN LHC and at a linear e^+e^- collider.Comment: 44 pages, 21 figure

    Yukawa-unified natural supersymmetry

    Get PDF
    Previous work on t-b-\tau Yukawa-unified supersymmetry, as expected from SUSY GUT theories based on the gauge group SO(10), tended to have exceedingly large electroweak fine-tuning (EWFT). Here, we examine supersymmetric models where we simultaneously require low EWFT ("natural SUSY") and a high degree of Yukawa coupling unification, along with a light Higgs scalar with m_h\sim125 GeV. As Yukawa unification requires large tan\beta\sim50, while EWFT requires rather light third generation squarks and low \mu\sim100-250 GeV, B-physics constraints from BR(B\to X_s\gamma) and BR(B_s\to \mu+\mu-) can be severe. We are able to find models with EWFT \Delta\lesssim 50-100 (better than 1-2% EWFT) and with Yukawa unification as low as R_yuk\sim1.3 (30% unification) if B-physics constraints are imposed. This may be improved to R_yuk\sim1.2 if additional small flavor violating terms conspire to improve accord with B-constraints. We present several Yukawa-unified natural SUSY (YUNS) benchmark points. LHC searches will be able to access gluinos in the lower 1-2 TeV portion of their predicted mass range although much of YUNS parameter space may lie beyond LHC14 reach. If heavy Higgs bosons can be accessed at a high rate, then the rare H, A\to \mu+\mu- decay might allow a determination of tan\beta\sim50 as predicted by YUNS models. Finally, the predicted light higgsinos should be accessible to a linear e+e- collider with \sqrt{s}\sim0.5 TeV.Comment: 18 pages, 7 figures, pdflatex; 3 references adde
    corecore