1,819 research outputs found

    The Behavior of Granular Materials under Cyclic Shear

    Full text link
    The design and development of a parallel plate shear cell for the study of large scale shear flows in granular materials is presented. The parallel plate geometry allows for shear studies without the effects of curvature found in the more common Couette experiments. A system of independently movable slats creates a well with side walls that deform in response to the motions of grains within the pack. This allows for true parallel plate shear with minimal interference from the containing geometry. The motions of the side walls also allow for a direct measurement of the velocity profile across the granular pack. Results are presented for applying this system to the study of transients in granular shear and for shear-induced crystallization. Initial shear profiles are found to vary from packing to packing, ranging from a linear profile across the entire system to an exponential decay with a width of approximately 6 bead diameters. As the system is sheared, the velocity profile becomes much sharper, resembling an exponential decay with a width of roughly 3 bead diameters. Further shearing produces velocity profiles which can no longer be fit to an exponential decay, but are better represented as a Gaussian decay or error function profile. Cyclic shear is found to produce large scale ordering of the granular pack, which has a profound impact on the shear profile. There exist periods of time in which there is slipping between layers as well as periods of time in which the layered particles lock together resulting in very little relative motion.Comment: 10 pages including 12 figure

    Nuclear Shell Model by the Quantum Monte Carlo Diagonalization Method

    Full text link
    The feasibility of shell-model calculations is radically extended by the Quantum Monte Carlo Diagonalization method with various essential improvements. The major improvements are made in the sampling for the generation of shell-model basis vectors, and in the restoration of symmetries such as angular momentum and isospin. Consequently the level structure of low-lying states can be studied with realistic interactions. After testing this method on 24^{24}Mg, we present first results for energy levels and E2E2 properties of 64^{64}Ge, indicating its large and γ\gamma-soft deformation.Comment: 12 pages, RevTex, 2 figures, to be published in Physical Review Letter

    Freshly Formed Dust in the Cassiopeia A Supernova Remnant as Revealed by the Spitzer Space Telescope

    Get PDF
    We performed Spitzer Infrared Spectrograph mapping observations covering nearly the entire extent of the Cassiopeia A supernova remnant (SNR), producing mid-infrared (5.5-35 micron) spectra every 5-10". Gas lines of Ar, Ne, O, Si, S and Fe, and dust continua were strong for most positions. We identify three distinct ejecta dust populations based on their continuum shapes. The dominant dust continuum shape exhibits a strong peak at 21 micron. A line-free map of 21 micron-peak dust made from the 19-23 micron range closely resembles the [Ar II], [O IV], and [Ne II] ejecta-line maps implying that dust is freshly formed in the ejecta. Spectral fitting implies the presence of SiO2, Mg protosilicates, and FeO grains in these regions. The second dust type exhibits a rising continuum up to 21 micron and then flattens thereafter. This ``weak 21 micron'' dust is likely composed of Al2O3 and C grains. The third dust continuum shape is featureless with a gently rising spectrum and is likely composed of MgSiO3 and either Al2O3 or Fe grains. Using the least massive composition for each of the three dust classes yields a total mass of 0.02 Msun. Using the most-massive composition yields a total mass of 0.054 Msun. The primary uncertainty in the total dust mass stems from the selection of the dust composition necessary for fitting the featureless dust as well as 70 micron flux. The freshly formed dust mass derived from Cas A is sufficient from SNe to explain the lower limit on the dust masses in high redshift galaxies.Comment: 8 figures: Accepted for the publication in Ap

    Density Fluctuations in an Electrolyte from Generalized Debye-Hueckel Theory

    Full text link
    Near-critical thermodynamics in the hard-sphere (1,1) electrolyte is well described, at a classical level, by Debye-Hueckel (DH) theory with (+,-) ion pairing and dipolar-pair-ionic-fluid coupling. But DH-based theories do not address density fluctuations. Here density correlations are obtained by functional differentiation of DH theory generalized to {\it non}-uniform densities of various species. The correlation length ξ\xi diverges universally at low density ρ\rho as (Tρ)1/4(T\rho)^{-1/4} (correcting GMSA theory). When ρ=ρc\rho=\rho_c one has ξξ0+/t1/2\xi\approx\xi_0^+/t^{1/2} as t(TTc)/Tc0+t\equiv(T-T_c)/T_c\to 0+ where the amplitudes ξ0+\xi_0^+ compare informatively with experimental data.Comment: 5 pages, REVTeX, 1 ps figure included with epsf. Minor changes, references added. Accepted for publication in Phys. Rev. Let

    Dragging a polymer chain into a nanotube and subsequent release

    Full text link
    We present a scaling theory and Monte Carlo (MC) simulation results for a flexible polymer chain slowly dragged by one end into a nanotube. We also describe the situation when the completely confined chain is released and gradually leaves the tube. MC simulations were performed for a self-avoiding lattice model with a biased chain growth algorithm, the pruned-enriched Rosenbluth method. The nanotube is a long channel opened at one end and its diameter DD is much smaller than the size of the polymer coil in solution. We analyze the following characteristics as functions of the chain end position xx inside the tube: the free energy of confinement, the average end-to-end distance, the average number of imprisoned monomers, and the average stretching of the confined part of the chain for various values of DD and for the number of monomers in the chain, NN. We show that when the chain end is dragged by a certain critical distance xx^* into the tube, the polymer undergoes a first-order phase transition whereby the remaining free tail is abruptly sucked into the tube. This is accompanied by jumps in the average size, the number of imprisoned segments, and in the average stretching parameter. The critical distance scales as xND11/νx^*\sim ND^{1-1/\nu}. The transition takes place when approximately 3/4 of the chain units are dragged into the tube. The theory presented is based on constructing the Landau free energy as a function of an order parameter that provides a complete description of equilibrium and metastable states. We argue that if the trapped chain is released with all monomers allowed to fluctuate, the reverse process in which the chain leaves the confinement occurs smoothly without any jumps. Finally, we apply the theory to estimate the lifetime of confined DNA in metastable states in nanotubes.Comment: 13pages, 14figure

    Dose-related effects of smallpox vaccine

    Get PDF
    BACKGROUND: We conducted a double-blind, randomized trial of three dilutions of vaccinia virus vaccine in previously unimmunized adults in order to assess the clinical success rates, humoral responses, and virus-specific activity of cytotoxic T cells and interferon-gamma-producing T cells. METHODS: Sixty healthy adults were inoculated intradermally by bifurcated needle with undiluted vaccine (dose, 10(7.8) plaque-forming units [pfu] per milliliter), a 1:10 dilution (dose, 10(6.5) pfu per milliliter), or a 1:100 dilution (dose, 10(5.0) pfu per milliliter); there were 20 subjects in each group. The subjects were monitored with respect to vesicle formation (an indicator of successful vaccination), the viral titer at the time of peak lesion formation, antiviral antibodies, and cellular immune responses. RESULTS: A vaccinia vesicle developed in 19 of the 20 subjects who received undiluted vaccine (95 percent), 14 of the 20 who received the 1:10 dilution (70 percent), and 3 of the 20 who received the 1:100 dilution (15 percent). One month after vaccination, 34 of 36 subjects with vesicles had antibody responses, as compared with only 1 of 24 subjects without clinical evidence of vaccinia virus replication. Vigorous cytotoxic T-cell and interferon-gamma responses occurred in 94 percent of subjects with vesicles, and a cytotoxic T-cell response occurred in only one subject without a vesicle. CONCLUSIONS: The vaccinia virus vaccine (which was produced in 1982 or earlier) still has substantial potency when administered by a bifurcated needle to previously unvaccinated adults. Diluting the vaccine reduces the rate of successful vaccination. The development of vesicular skin lesions after vaccination correlates with the induction of the antibody and T-cell responses that are considered essential for clearing vaccinia virus infections

    phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism

    Get PDF
    It is well accepted that lateral redistribution of the phytohormone auxin underlies the bending of plant organs towards light. In monocots, photoreception occurs at the shoot tip above the region of differential growth. Despite more than a century of research, it is still unresolved how light regulates auxin distribution and where this occurs in dicots. Here, we establish a system in Arabidopsis thaliana to study hypocotyl phototropism in the absence of developmental events associated with seedling photomorphogenesis. We show that auxin redistribution to the epidermal sites of action occurs at and above the hypocotyl apex, not at the elongation zone. Within this region, we identify the auxin efflux transporter ATP-BINDING CASSETTE B19 (ABCB19) as a substrate target for the photoreceptor kinase PHOTOTROPIN 1 (phot1). Heterologous expression and physiological analyses indicate that phosphorylation of ABCB19 by phot1 inhibits its efflux activity, thereby increasing auxin levels in and above the hypocotyl apex to halt vertical growth and prime lateral fluxes that are subsequently channeled to the elongation zone by PIN-FORMED 3 (PIN3). Together, these results provide new insights into the roles of ABCB19 and PIN3 in establishing phototropic curvatures and demonstrate that the proximity of light perception and differential phototropic growth is conserved in angiosperm

    AKARI and BLAST Observations of the Cassiopeia A Supernova Remnant and Surrounding Interstellar Medium

    Full text link
    We use new large area far infrared maps ranging from 65 - 500 microns obtained with the AKARI and the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) missions to characterize the dust emission toward the Cassiopeia A supernova remnant (SNR). Using the AKARI high resolution data we find a new "tepid" dust grain population at a temperature of ~35K and with an estimated mass of 0.06 solar masses. This component is confined to the central area of the SNR and may represent newly-formed dust in the unshocked supernova ejecta. While the mass of tepid dust that we measure is insufficient by itself to account for the dust observed at high redshift, it does constitute an additional dust population to contribute to those previously reported. We fit our maps at 65, 90, 140, 250, 350, and 500 microns to obtain maps of the column density and temperature of "cold" dust (near 16 K) distributed throughout the region. The large column density of cold dust associated with clouds seen in molecular emission extends continuously from the surrounding interstellar medium to project on the SNR, where the foreground component of the clouds is also detectable through optical, X-ray, and molecular extinction. At the resolution available here, there is no morphological signature to isolate any cold dust associated only with the SNR from this confusing interstellar emission. Our fit also recovers the previously detected "hot" dust in the remnant, with characteristic temperature 100 K.Comment: Accepted for publication in the Astrophysical Journal. Maps and related data are available at http://blastexperiment.info
    corecore