1,094 research outputs found
Mapping the Structure and Evolution of Chemistry Research
How does our collective scholarly knowledge grow over time? What major areas of science exist and how are they interlinked? Which areas are major knowledge producers; which ones are consumers? Computational scientometrics â the application of bibliometric/scientometric methods to large-scale scholarly datasets â and the communication of results via maps of science might help us answer these questions. This paper represents the results of a prototype study that aims to map the structure and evolution of chemistry research over a 30 year time frame. Information from the combined Science (SCIE) and Social Science (SSCI) Citations Indexes from 2002 was used to generate a disciplinary map of 7,227 journals and 671 journal clusters. Clusters relevant to study the structure and evolution of chemistry were identified using JCR categories and were further clustered into 14 disciplines. The changing scientific composition of these 14 disciplines and their knowledge exchange via citation linkages was computed. Major changes on the dominance, influence, and role of Chemistry, Biology, Biochemistry, and Bioengineering over these 30 years are discussed. The paper concludes with suggestions for future work
A cosmological model in Weyl-Cartan spacetime
We present a cosmological model for early stages of the universe on the basis
of a Weyl-Cartan spacetime. In this model, torsion and
nonmetricity are proportional to the vacuum polarization.
Extending earlier work of one of us (RT), we discuss the behavior of the cosmic
scale factor and the Weyl 1-form in detail. We show how our model fits into the
more general framework of metric-affine gravity (MAG).Comment: 19 pages, 5 figures, typos corrected, uses IOP style fil
Taxonomy Visualization in Support of the Semi-Automatic Validation and Optimization of Organizational Schemas
Never before in history, mankind had access to and produced so much data, information, knowledge, and expertise as today. To organize, access, and manage these highly valuable assets effectively, we use taxonomies, classification hierarchies, ontologies, and controlled vocabularies among others. We create directory structures for our files. We use organizational hierarchies to structure our work environment. However, the design and continuous update of these organizational schemas that potentially have thousands of class nodes to organize millions of entities is challenging for any human being.
The Taxonomy Visualization and Validation (TV) tool introduced in this paper supports the semi-automatic validation and optimization of organizational schemas such as file directories, classification hierarchies, taxonomies, or any other structure imposed on a data set as a means of organization, structuring, and naming. By showing the âgoodness of fitâ of a schema and the potentially millions of entities it organizes, the TV eases the identification and reclassification of misclassified information entities, the identification of classes that grew over-proportionally, the evaluation of the size and homogeneity of existing classes, the examination of the âwell-formednessâ of an organizational schema, etc. The TV is exemplarily applied to display the United States Patent and Trademark Office patent classification, which organizes more than three million patents into about 160,000 distinct patent classes. The paper concludes with a discussion and an outlook to future work
Quantifying structure in networks
We investigate exponential families of random graph distributions as a
framework for systematic quantification of structure in networks. In this paper
we restrict ourselves to undirected unlabeled graphs. For these graphs, the
counts of subgraphs with no more than k links are a sufficient statistics for
the exponential families of graphs with interactions between at most k links.
In this framework we investigate the dependencies between several observables
commonly used to quantify structure in networks, such as the degree
distribution, cluster and assortativity coefficients.Comment: 17 pages, 3 figure
Recommended from our members
Promoters for Pd-catalyzed methoxycarbonylation of vinyl acetate
A study on the influence of acidic and non-acidic promoters for Pd(PPh 3)-catalyzed methoxycarbonylation of vinyl acetate was conducted in order to find an efficient protocol for the synthesis of methyl O-acetyl lactate. Besides known promoters also some new catalytic systems were tested. Aluminium triflate is the most active additive
Generalised equilibrium of cosmological fluids in second-order thermodynamics
Combining the second-order entropy flow vector of the causal Israel-Stewart
theory with the conformal Killing-vector property of , where
is the four-velocity of the medium and T its equilibrium temperature, we
investigate generalized equilibrium states for cosmological fluids with
nonconserved particle number. We calculate the corresponding equilibrium
particle production rate and show that this quantity is reduced compared with
the results of the previously studied first-order theory. Generalized
equilibrium for massive particles turns out to be compatible with a dependence
of the fluid energy density on the scale factor a
of the Robertson-Walker metric and may be regarded as a realization of
so-called K-matter.Comment: 17 pages, iopfts.tex file, submitted to Class. Quantum Gra
Cosmological thermodynamics and deflationary gas universe
We establish a general thermodynamic scheme for cosmic fluids with internal
self-interactions and discuss equilibrium and non-equilibrium aspects of such
systems in connection with (generalized) symmetry properties of the
cosmological dynamics. As an example we construct an exactly solvable gas
dynamical model of a ``deflationary'' transition from an initial de Sitter
phase to a subsequent Friedmann-Lema\^{\i}tre-Robertson-Walker (FLRW) period.
We demonstrate that this dynamics represents a manifestation of a conformal
symmetry of an ``optical'' metric, characterized by a specific effective
refraction index of the cosmic medium.Comment: 12 pages, to appear in PR
Age of the Universe: Influence of the Inhomogeneities on the global Expansion-Factor
For the first time we calculate quantitatively the influence of
inhomogeneities on the global expansion factor by averaging the Friedmann
equation. In the framework of the relativistic second-order
Zel'dovich-approximation scheme for irrotational dust we use observational
results in form of the normalisation constant fixed by the COBE results and we
check different power spectra, namely for adiabatic CDM, isocurvature CDM, HDM,
WDM, Strings and Textures. We find that the influence of the inhomogeneities on
the global expansion factor is very small. So the error in determining the age
of the universe using the Hubble constant in the usual way is negligible. This
does not imply that the effect is negligible for local astronomical
measurements of the Hubble constant. Locally the determination of the
redshift-distance relation can be strongly influenced by the peculiar velocity
fields due to inhomogeneities. Our calculation does not consider such effects,
but is contrained to comparing globally homogeneous and averaged inhomogeneous
matter distributions. In addition we relate our work to previous treatments.Comment: 10 pages, version accepted by Phys. Rev.
Precision Measurement of the 29Si, 33S, and 36Cl Binding Energies
The binding energies of 29Si, 33S, and 36Cl have been measured with a
relative uncertainty using a flat-crystal spectrometer.
The unique features of these measurements are 1) nearly perfect crystals whose
lattice spacing is known in meters, 2) a highly precise angle scale that is
derived from first principles, and 3) a gamma-ray measurement facility that is
coupled to a high flux reactor with near-core source capability. The binding
energy is obtained by measuring all gamma-rays in a cascade scheme connecting
the capture and ground states. The measurements require the extension of
precision flat-crystal diffraction techniques to the 5 to 6 MeV energy region,
a significant precision measurement challenge. The binding energies determined
from these gamma-ray measurements are consistent with recent highly accurate
atomic mass measurements within a relative uncertainty of .
The gamma-ray measurement uncertainties are the dominant contributors to the
uncertainty of this consistency test. The measured gamma-ray energies are in
agreement with earlier precision gamma-ray measurements.Comment: 13 pages, 4 figure
- âŠ