1,094 research outputs found

    Mapping the Structure and Evolution of Chemistry Research

    Get PDF
    How does our collective scholarly knowledge grow over time? What major areas of science exist and how are they interlinked? Which areas are major knowledge producers; which ones are consumers? Computational scientometrics – the application of bibliometric/scientometric methods to large-scale scholarly datasets – and the communication of results via maps of science might help us answer these questions. This paper represents the results of a prototype study that aims to map the structure and evolution of chemistry research over a 30 year time frame. Information from the combined Science (SCIE) and Social Science (SSCI) Citations Indexes from 2002 was used to generate a disciplinary map of 7,227 journals and 671 journal clusters. Clusters relevant to study the structure and evolution of chemistry were identified using JCR categories and were further clustered into 14 disciplines. The changing scientific composition of these 14 disciplines and their knowledge exchange via citation linkages was computed. Major changes on the dominance, influence, and role of Chemistry, Biology, Biochemistry, and Bioengineering over these 30 years are discussed. The paper concludes with suggestions for future work

    A cosmological model in Weyl-Cartan spacetime

    Get PDF
    We present a cosmological model for early stages of the universe on the basis of a Weyl-Cartan spacetime. In this model, torsion TαT^{\alpha} and nonmetricity QαÎČQ_{\alpha \beta} are proportional to the vacuum polarization. Extending earlier work of one of us (RT), we discuss the behavior of the cosmic scale factor and the Weyl 1-form in detail. We show how our model fits into the more general framework of metric-affine gravity (MAG).Comment: 19 pages, 5 figures, typos corrected, uses IOP style fil

    Taxonomy Visualization in Support of the Semi-Automatic Validation and Optimization of Organizational Schemas

    Get PDF
    Never before in history, mankind had access to and produced so much data, information, knowledge, and expertise as today. To organize, access, and manage these highly valuable assets effectively, we use taxonomies, classification hierarchies, ontologies, and controlled vocabularies among others. We create directory structures for our files. We use organizational hierarchies to structure our work environment. However, the design and continuous update of these organizational schemas that potentially have thousands of class nodes to organize millions of entities is challenging for any human being. The Taxonomy Visualization and Validation (TV) tool introduced in this paper supports the semi-automatic validation and optimization of organizational schemas such as file directories, classification hierarchies, taxonomies, or any other structure imposed on a data set as a means of organization, structuring, and naming. By showing the “goodness of fit” of a schema and the potentially millions of entities it organizes, the TV eases the identification and reclassification of misclassified information entities, the identification of classes that grew over-proportionally, the evaluation of the size and homogeneity of existing classes, the examination of the “well-formedness” of an organizational schema, etc. The TV is exemplarily applied to display the United States Patent and Trademark Office patent classification, which organizes more than three million patents into about 160,000 distinct patent classes. The paper concludes with a discussion and an outlook to future work

    Quantifying structure in networks

    Full text link
    We investigate exponential families of random graph distributions as a framework for systematic quantification of structure in networks. In this paper we restrict ourselves to undirected unlabeled graphs. For these graphs, the counts of subgraphs with no more than k links are a sufficient statistics for the exponential families of graphs with interactions between at most k links. In this framework we investigate the dependencies between several observables commonly used to quantify structure in networks, such as the degree distribution, cluster and assortativity coefficients.Comment: 17 pages, 3 figure

    Generalised equilibrium of cosmological fluids in second-order thermodynamics

    Get PDF
    Combining the second-order entropy flow vector of the causal Israel-Stewart theory with the conformal Killing-vector property of ui/Tu_{i}/T, where uiu_{i} is the four-velocity of the medium and T its equilibrium temperature, we investigate generalized equilibrium states for cosmological fluids with nonconserved particle number. We calculate the corresponding equilibrium particle production rate and show that this quantity is reduced compared with the results of the previously studied first-order theory. Generalized equilibrium for massive particles turns out to be compatible with a dependence ρ∝a−2\rho \propto a ^{-2} of the fluid energy density ρ\rho on the scale factor a of the Robertson-Walker metric and may be regarded as a realization of so-called K-matter.Comment: 17 pages, iopfts.tex file, submitted to Class. Quantum Gra

    Cosmological thermodynamics and deflationary gas universe

    Get PDF
    We establish a general thermodynamic scheme for cosmic fluids with internal self-interactions and discuss equilibrium and non-equilibrium aspects of such systems in connection with (generalized) symmetry properties of the cosmological dynamics. As an example we construct an exactly solvable gas dynamical model of a ``deflationary'' transition from an initial de Sitter phase to a subsequent Friedmann-Lema\^{\i}tre-Robertson-Walker (FLRW) period. We demonstrate that this dynamics represents a manifestation of a conformal symmetry of an ``optical'' metric, characterized by a specific effective refraction index of the cosmic medium.Comment: 12 pages, to appear in PR

    Age of the Universe: Influence of the Inhomogeneities on the global Expansion-Factor

    Get PDF
    For the first time we calculate quantitatively the influence of inhomogeneities on the global expansion factor by averaging the Friedmann equation. In the framework of the relativistic second-order Zel'dovich-approximation scheme for irrotational dust we use observational results in form of the normalisation constant fixed by the COBE results and we check different power spectra, namely for adiabatic CDM, isocurvature CDM, HDM, WDM, Strings and Textures. We find that the influence of the inhomogeneities on the global expansion factor is very small. So the error in determining the age of the universe using the Hubble constant in the usual way is negligible. This does not imply that the effect is negligible for local astronomical measurements of the Hubble constant. Locally the determination of the redshift-distance relation can be strongly influenced by the peculiar velocity fields due to inhomogeneities. Our calculation does not consider such effects, but is contrained to comparing globally homogeneous and averaged inhomogeneous matter distributions. In addition we relate our work to previous treatments.Comment: 10 pages, version accepted by Phys. Rev.

    Precision Measurement of the 29Si, 33S, and 36Cl Binding Energies

    Full text link
    The binding energies of 29Si, 33S, and 36Cl have been measured with a relative uncertainty <0.59×10−6< 0.59 \times 10^{-6} using a flat-crystal spectrometer. The unique features of these measurements are 1) nearly perfect crystals whose lattice spacing is known in meters, 2) a highly precise angle scale that is derived from first principles, and 3) a gamma-ray measurement facility that is coupled to a high flux reactor with near-core source capability. The binding energy is obtained by measuring all gamma-rays in a cascade scheme connecting the capture and ground states. The measurements require the extension of precision flat-crystal diffraction techniques to the 5 to 6 MeV energy region, a significant precision measurement challenge. The binding energies determined from these gamma-ray measurements are consistent with recent highly accurate atomic mass measurements within a relative uncertainty of 4.3×10−74.3 \times 10^{-7}. The gamma-ray measurement uncertainties are the dominant contributors to the uncertainty of this consistency test. The measured gamma-ray energies are in agreement with earlier precision gamma-ray measurements.Comment: 13 pages, 4 figure
    • 

    corecore