7,603 research outputs found
Relationship between macroscopic physical properties and local distortions of low doping La{1-x}Ca{x}MnO3: an EXAFS study
A temperature-dependent EXAFS investigation of La{1-x}Ca{x}MnO3 is presented
for the concentration range that spans the ferromagnetic-insulator (FMI) to
ferromagnetic-metal (FMM) transition region, x = 0.16-0.22. The samples are
insulating for x = 0.16-0.2 and show a metal/insulator transition for x = 0.22.
All samples are ferromagnetic although the saturation magnetization for the 16%
Ca sample is only ~ 70% of the expected value at 0.4T. We find that the FMI
samples have similar correlations between changes in the local Mn-O distortions
and the magnetization as observed previously for the colossal magnetoresistance
(CMR) samples (0.2 < x < 0.5) - except that the FMI samples never become fully
magnetized. The data show that there are at least two distinct types of
distortions. The initial distortions removed as the insulating sample becomes
magnetized are small and provides direct evidence that roughly 50% of the Mn
sites have a small distortion/site and are magnetized first. The large
remaining Mn-O distortions at low T are attributed to a small fraction of
Jahn-Teller-distorted Mn sites that are either antiferromagnetically ordered or
unmagnetized. Thus the insulating samples are very similar to the behavior of
the CMR samples up to the point at which the M/I transition occurs for the CMR
materials. The lack of metallic conductivity for x <= 0.2, when 50% or more of
the sample is magnetic, implies that there must be preferred magnetized Mn
sites and that such sites do not percolate at these concentrations.Comment: 27 pages, 8 figures, to be submitted to Phys. Rev.
Multiple human herpesvirus-8 infection
In Malawian patients with Kaposi sarcoma (KS) and their relatives, we investigated nucleotide-sequence variation in human herpesvirus-8 (HHV-8) subgenomic DNA, amplified from oral and blood samples by use of polymerase chain reaction. Twenty-four people had amplifiable HHV-8 DNA in >1 sample; 9 (38%) were seropositive for human immunodeficiency virus type 1, 21 (88%) were anti-HHV-8-seropositive, and 7 (29%) had KS. Sequence variation was sought in 3 loci of the HHV-8 genome: the internal repeat domain of open-reading frame (ORF) 73, the KS330 segment of ORF 26, and variable region 1 of ORF K1. Significant intraperson/intersample and intrasample sequence polymorphisms were observed in 14 people (60%). For 3 patients with KS, intraperson genotypic differences, arising from nucleotide sequence variations in ORFs 26 and K1, were found in blood and oral samples. For 2 other patients with KS and for 9 people without KS, intraperson genotypic and subgenotypic differences, originating predominantly from ORF K1, were found in oral samples; for the 2 patients with KS and for 4 individuals without KS, intrasample carriage of distinct ORF K1 sequences also were discernible. Our findings imply HHV-8 superinfection
Electromagnetic Casimir piston in higher dimensional spacetimes
We consider the Casimir effect of the electromagnetic field in a higher
dimensional spacetime of the form , where is the
4-dimensional Minkowski spacetime and is an -dimensional
compact manifold. The Casimir force acting on a planar piston that can move
freely inside a closed cylinder with the same cross section is investigated.
Different combinations of perfectly conducting boundary conditions and
infinitely permeable boundary conditions are imposed on the cylinder and the
piston. It is verified that if the piston and the cylinder have the same
boundary conditions, the piston is always going to be pulled towards the closer
end of the cylinder. However, if the piston and the cylinder have different
boundary conditions, the piston is always going to be pushed to the middle of
the cylinder. By taking the limit where one end of the cylinder tends to
infinity, one obtains the Casimir force acting between two parallel plates
inside an infinitely long cylinder. The asymptotic behavior of this Casimir
force in the high temperature regime and the low temperature regime are
investigated for the case where the cross section of the cylinder in is
large. It is found that if the separation between the plates is much smaller
than the size of , the leading term of the Casimir force is the
same as the Casimir force on a pair of large parallel plates in the
-dimensional Minkowski spacetime. However, if the size of
is much smaller than the separation between the plates, the leading term of the
Casimir force is times the Casimir force on a pair of large parallel
plates in the 4-dimensional Minkowski spacetime, where is the first Betti
number of . In the limit the manifold vanishes, one
does not obtain the Casimir force in the 4-dimensional Minkowski spacetime if
is nonzero.Comment: 22 pages, 4 figure
Nonexistence theorems for traversable wormholes
Gauss-Bonnet formula is used to derive a new and simple theorem of
nonexistence of vacuum static nonsingular lorentzian wormholes. We also derive
simple proofs for the nonexistence of lorentzian wormhole solutions for some
classes of static matter such as, for instance, real scalar fields with a
generic potential obeying and massless fermions fields
Geometric Phase in Eigenspace Evolution of Invariant and Adiabatic Action Operators
The theory of geometric phase is generalized to a cyclic evolution of the
eigenspace of an invariant operator with -fold degeneracy.
The corresponding geometric phase is interpreted as a holonomy inherited from
the universal connection of a Stiefel U(N)-bundle over a Grassmann manifold.
Most significantly, for an arbitrary initial state, this geometric phase
captures the inherent geometric feature of the state evolution. Moreover, the
geometric phase in the evolution of the eigenspace of an adiabatic action
operator is also addressed, which is elaborated by a pullback U(N)-bundle.
Several intriguing physical examples are illustrated.Comment: Added Refs. and corrected typos; 4 page
Finite Temperature Casimir Effect in Randall-Sundrum Models
The finite temperature Casimir effect for a scalar field in the bulk region
of the two Randall-Sundrum models, RSI and RSII, is studied. We calculate the
Casimir energy and the Casimir force for two parallel plates with separation
on the visible brane in the RSI model. High-temperature and low-temperature
cases are covered. Attractiveness versus repulsiveness of the temperature
correction to the force is discussed in the typical special cases of
Dirichlet-Dirichlet, Neumann-Neumann, and Dirichlet-Neumann boundary conditions
at low temperature. The Abel-Plana summation formula is made use of, as this
turns out to be most convenient. Some comments are made on the related
contemporary literature.Comment: 33 pages latex, 2 figures. Some changes in the discussion. To appear
in New J. Phy
Incomplete quantum state estimation: a comprehensive study
We present a detailed account of quantum state estimation by joint
maximization of the likelihood and the entropy. After establishing the
algorithms for both perfect and imperfect measurements, we apply the procedure
to data from simulated and actual experiments. We demonstrate that the
realistic situation of incomplete data from imperfect measurements can be
handled successfully.Comment: 11 pages, 10 figure
Monitoring oxide quality using the spread of the dC/dV peak in scanning capacitance microscopy measurements
This article proposes a method for evaluating the quality of the overlying oxide on samples used in scanning capacitance microscopy (SCM) dopant profile extraction. The method can also be used generally as a convenient in-process method for monitoring oxide quality directly after the oxidation process without prior metallization of the oxide-semiconductor sample. The spread of the differential capacitance characteristic (dC/dV versus V plot), characterized using its full width at half maximum (FWHM), was found to be strongly dependent on the interface trap density as a consequence of the stretch-out effect of interface traps on the capacitance-voltage (C-V) curve. Results show that the FWHM of the dC/dV characteristic is a sensitive monitor of oxide quality (in terms of interface trap density) as it is not complicated by localized oxide charging effects as in the case of the SCM probe tip voltage corresponding to maximum dC/dV. The magnitude of the dC/dV peak, at any given surface potential, was also found to be independent of the interface traps and only dependent on the substrate dopant concentration, which makes SCM dopant profile extraction possible
- …
