959 research outputs found

    Filling the Void: A Low Cost, High-Yield Method to Addressing Incidental Findings in Trauma Patients

    Get PDF
    In this study we: Report the incidence of incidental findings in a suburban trauma center treating primarily blunt and elderly trauma Propose simple solutions to increase the rate of disclosure to patientshttps://jdc.jefferson.edu/patientsafetyposters/1070/thumbnail.jp

    Underwater bubble pinch-off: transient stretching flow

    Full text link
    At the point of pinch-off of an underwater air bubble, the speed of water rushing in diverges. Previous studies that assumed radial flow throughout showed that the local axial shape is two smoothly connected, slender cones that transition very slowly (logarithmically) to a cylindrical segment. Our simulations show that even with initially radial flow, a transient vertical flow develops with comparable speeds. Bernoulli pressure draws water into the singularity region while incompressibility forces it away from the neck minimum, generating significant vertical flows that rapidly slenderize and symmetrize the collapse region. This transition is due to a different mechanism, occurring much faster than previously expected. Vertical flows dictate the neck shape evolution.Comment: 5 pages, 6 figure

    Hadrons in the Nuclear Medium

    Get PDF
    Quantum Chromodynamics, the microscopic theory of strong interactions, has not yet been applied to the calculation of nuclear wave functions. However, it certainly provokes a number of specific questions and suggests the existence of novel phenomena in nuclear physics which are not part of the the traditional framework of the meson-nucleon description of nuclei. Many of these phenomena are related to high nuclear densities and the role of color in nucleonic interactions. Quantum fluctuations in the spatial separation between nucleons may lead to local high density configurations of cold nuclear matter in nuclei, up to four times larger than typical nuclear densities. We argue here that experiments utilizing the higher energies available upon completion of the Jefferson Laboratory energy upgrade will be able to probe the quark-gluon structure of such high density configurations and therefore elucidate the fundamental nature of nuclear matter. We review three key experimental programs: quasi-elastic electro-disintegration of light nuclei, deep inelastic scattering from nuclei at x>1x>1, and the measurement of tagged structure functions. These interrelated programs are all aimed at the exploration of the quark structure of high density nuclear configurations. The study of the QCD dynamics of elementary hard processes is another important research direction and nuclei provide a unique avenue to explore these dynamics. We argue that the use of nuclear targets and large values of momentum transfer at would allow us to determine whether the physics of the nucleon form factors is dominated by spatially small configurations of three quarks.Comment: 52 pages IOP style LaTex file and 20 eps figure

    Beam-Target Double-Spin Asymmetry A(LT) in Charged Pion Production from Deep Inelastic Scattering on a Transversely Polarized He-3 Target at 1.4 \u3c Q(2) \u3c 2.7 GeV2

    Get PDF
    We report the first measurement of the double-spin asymmetry A(LT) for charged pion electroproduction in semi-inclusive deep-inelastic electron scattering on a transversely polarized He-3 target. The kinematics focused on the valence quark region, 0.16 \u3c x \u3c 0.35 with 1.4 \u3c Q(2) \u3c 2.7 GeV2. The corresponding neutron A(LT) asymmetries were extracted from the measured He-3 asymmetries and proton over He-3 cross section ratios using the effective polarization approximation. These new data probe the transverse momentum dependent parton distribution function g(1T)(q) and therefore provide access to quark spin-orbit correlations. Our results indicate a positive azimuthal asymmetry for pi(-) production on He-3 and the neutron, while our pi(+) asymmetries are consistent with zero

    Scaling dependence on the fluid viscosity ratio in the selective withdrawal transition

    Get PDF
    In the selective withdrawal experiment fluid is withdrawn through a tube with its tip suspended a distance S above a two-fluid interface. At sufficiently low withdrawal rates, Q, the interface forms a steady state hump and only the upper fluid is withdrawn. When Q is increased (or S decreased), the interface undergoes a transition so that the lower fluid is entrained with the upper one, forming a thin steady-state spout. Near this transition the hump curvature becomes very large and displays power-law scaling behavior. This scaling allows for steady-state hump profiles at different flow rates and tube heights to be scaled onto a single similarity profile. I show that the scaling behavior is independent of the viscosity ratio.Comment: 33 Pages, 61 figures, 1 tabl

    Modeling E-mail Networks and Inferring Leadership Using Self-Exciting Point Processes

    Get PDF
    <p>We propose various self-exciting point process models for the times when e-mails are sent between individuals in a social network. Using an expectation–maximization (EM)-type approach, we fit these models to an e-mail network dataset from West Point Military Academy and the Enron e-mail dataset. We argue that the self-exciting models adequately capture major temporal clustering features in the data and perform better than traditional stationary Poisson models. We also investigate how accounting for diurnal and weekly trends in e-mail activity improves the overall fit to the observed network data. A motivation and application for fitting these self-exciting models is to use parameter estimates to characterize important e-mail communication behaviors such as the baseline sending rates, average reply rates, and average response times. A primary goal is to use these features, estimated from the self-exciting models, to infer the underlying leadership status of users in the West Point and Enron networks. Supplementary materials for this article are available online.</p

    A Measurement of the Interference Structure Function, R_LT, for the 12C(e,e'p) reaction in the Quasielastic Region

    Get PDF
    The coincidence cross-section and the interference structure function, R_LT, were measured for the 12C(e,e'p) 11B reaction at quasielastic kinematics and central momentum transfer of q=400 MeV/c. The measurement was at an opening angle of theta_pq=11 degrees, covering a range in missing energy of E_m = 0 to 65 MeV. The R_LT structure function is found to be consistent with zero for E_m > 50 MeV, confirming an earlier study which indicated that R_L vanishes in this region. The integrated strengths of the p- and s-shell are compared with a Distorted Wave Impulse Approximation calculation. The s-shell strength and shape are compared with a Hartree Fock-Random Phase Approximation calculation. The DWIA calculation overestimates the cross sections for p- and s-shell proton knockout as expected, but surprisingly agrees with the extracted R_LT value for both shells. The HF-RPA calculation describes the data more consistently, which may be due to the inclusion of 2-body currents in this calculation.Comment: 8 Pages LaTex, 5 postscript figures. Submitted to Phys. Rev.
    • …
    corecore