959 research outputs found
Recommended from our members
A bulky glycocalyx fosters metastasis formation by promoting G1 cell cycle progression.
Metastasis depends upon cancer cell growth and survival within the metastatic niche. Tumors which remodel their glycocalyces, by overexpressing bulky glycoproteins like mucins, exhibit a higher predisposition to metastasize, but the role of mucins in oncogenesis remains poorly understood. Here we report that a bulky glycocalyx promotes the expansion of disseminated tumor cells in vivo by fostering integrin adhesion assembly to permit G1 cell cycle progression. We engineered tumor cells to display glycocalyces of various thicknesses by coating them with synthetic mucin-mimetic glycopolymers. Cells adorned with longer glycopolymers showed increased metastatic potential, enhanced cell cycle progression, and greater levels of integrin-FAK mechanosignaling and Akt signaling in a syngeneic mouse model of metastasis. These effects were mirrored by expression of the ectodomain of cancer-associated mucin MUC1. These findings functionally link mucinous proteins with tumor aggression, and offer a new view of the cancer glycocalyx as a major driver of disease progression
Filling the Void: A Low Cost, High-Yield Method to Addressing Incidental Findings in Trauma Patients
In this study we:
Report the incidence of incidental findings in a suburban trauma center treating primarily blunt and elderly trauma
Propose simple solutions to increase the rate of disclosure to patientshttps://jdc.jefferson.edu/patientsafetyposters/1070/thumbnail.jp
Underwater bubble pinch-off: transient stretching flow
At the point of pinch-off of an underwater air bubble, the speed of water
rushing in diverges. Previous studies that assumed radial flow throughout
showed that the local axial shape is two smoothly connected, slender cones that
transition very slowly (logarithmically) to a cylindrical segment. Our
simulations show that even with initially radial flow, a transient vertical
flow develops with comparable speeds. Bernoulli pressure draws water into the
singularity region while incompressibility forces it away from the neck
minimum, generating significant vertical flows that rapidly slenderize and
symmetrize the collapse region. This transition is due to a different
mechanism, occurring much faster than previously expected. Vertical flows
dictate the neck shape evolution.Comment: 5 pages, 6 figure
Hadrons in the Nuclear Medium
Quantum Chromodynamics, the microscopic theory of strong interactions, has
not yet been applied to the calculation of nuclear wave functions. However, it
certainly provokes a number of specific questions and suggests the existence of
novel phenomena in nuclear physics which are not part of the the traditional
framework of the meson-nucleon description of nuclei. Many of these phenomena
are related to high nuclear densities and the role of color in nucleonic
interactions. Quantum fluctuations in the spatial separation between nucleons
may lead to local high density configurations of cold nuclear matter in nuclei,
up to four times larger than typical nuclear densities. We argue here that
experiments utilizing the higher energies available upon completion of the
Jefferson Laboratory energy upgrade will be able to probe the quark-gluon
structure of such high density configurations and therefore elucidate the
fundamental nature of nuclear matter. We review three key experimental
programs: quasi-elastic electro-disintegration of light nuclei, deep inelastic
scattering from nuclei at , and the measurement of tagged structure
functions. These interrelated programs are all aimed at the exploration of the
quark structure of high density nuclear configurations.
The study of the QCD dynamics of elementary hard processes is another
important research direction and nuclei provide a unique avenue to explore
these dynamics. We argue that the use of nuclear targets and large values of
momentum transfer at would allow us to determine whether the physics of the
nucleon form factors is dominated by spatially small configurations of three
quarks.Comment: 52 pages IOP style LaTex file and 20 eps figure
Beam-Target Double-Spin Asymmetry A(LT) in Charged Pion Production from Deep Inelastic Scattering on a Transversely Polarized He-3 Target at 1.4 \u3c Q(2) \u3c 2.7 GeV2
We report the first measurement of the double-spin asymmetry A(LT) for charged pion electroproduction in semi-inclusive deep-inelastic electron scattering on a transversely polarized He-3 target. The kinematics focused on the valence quark region, 0.16 \u3c x \u3c 0.35 with 1.4 \u3c Q(2) \u3c 2.7 GeV2. The corresponding neutron A(LT) asymmetries were extracted from the measured He-3 asymmetries and proton over He-3 cross section ratios using the effective polarization approximation. These new data probe the transverse momentum dependent parton distribution function g(1T)(q) and therefore provide access to quark spin-orbit correlations. Our results indicate a positive azimuthal asymmetry for pi(-) production on He-3 and the neutron, while our pi(+) asymmetries are consistent with zero
Scaling dependence on the fluid viscosity ratio in the selective withdrawal transition
In the selective withdrawal experiment fluid is withdrawn through a tube with
its tip suspended a distance S above a two-fluid interface. At sufficiently low
withdrawal rates, Q, the interface forms a steady state hump and only the upper
fluid is withdrawn. When Q is increased (or S decreased), the interface
undergoes a transition so that the lower fluid is entrained with the upper one,
forming a thin steady-state spout. Near this transition the hump curvature
becomes very large and displays power-law scaling behavior. This scaling allows
for steady-state hump profiles at different flow rates and tube heights to be
scaled onto a single similarity profile. I show that the scaling behavior is
independent of the viscosity ratio.Comment: 33 Pages, 61 figures, 1 tabl
Modeling E-mail Networks and Inferring Leadership Using Self-Exciting Point Processes
<p>We propose various self-exciting point process models for the times when e-mails are sent between individuals in a social network. Using an expectation–maximization (EM)-type approach, we fit these models to an e-mail network dataset from West Point Military Academy and the Enron e-mail dataset. We argue that the self-exciting models adequately capture major temporal clustering features in the data and perform better than traditional stationary Poisson models. We also investigate how accounting for diurnal and weekly trends in e-mail activity improves the overall fit to the observed network data. A motivation and application for fitting these self-exciting models is to use parameter estimates to characterize important e-mail communication behaviors such as the baseline sending rates, average reply rates, and average response times. A primary goal is to use these features, estimated from the self-exciting models, to infer the underlying leadership status of users in the West Point and Enron networks. Supplementary materials for this article are available online.</p
A Measurement of the Interference Structure Function, R_LT, for the 12C(e,e'p) reaction in the Quasielastic Region
The coincidence cross-section and the interference structure function, R_LT,
were measured for the 12C(e,e'p) 11B reaction at quasielastic kinematics and
central momentum transfer of q=400 MeV/c. The measurement was at an opening
angle of theta_pq=11 degrees, covering a range in missing energy of E_m = 0 to
65 MeV. The R_LT structure function is found to be consistent with zero for E_m
> 50 MeV, confirming an earlier study which indicated that R_L vanishes in this
region. The integrated strengths of the p- and s-shell are compared with a
Distorted Wave Impulse Approximation calculation. The s-shell strength and
shape are compared with a Hartree Fock-Random Phase Approximation calculation.
The DWIA calculation overestimates the cross sections for p- and s-shell proton
knockout as expected, but surprisingly agrees with the extracted R_LT value for
both shells. The HF-RPA calculation describes the data more consistently, which
may be due to the inclusion of 2-body currents in this calculation.Comment: 8 Pages LaTex, 5 postscript figures. Submitted to Phys. Rev.
Conditional Glycosylation in Eukaryotic Cells Using a Biocompatible Chemical Inducer of Dimerization
- …