727 research outputs found

    The Spectral Correlation Function -- A New Tool for Analyzing Spectral-Line Maps

    Get PDF
    The "spectral correlation function" analysis we introduce in this paper is a new tool for analyzing spectral-line data cubes. Our initial tests, carried out on a suite of observed and simulated data cubes, indicate that the spectral correlation function [SCF] is likely to be a more discriminating statistic than other statistical methods normally applied. The SCF is a measure of similarity between neighboring spectra in the data cube. When the SCF is used to compare a data cube consisting of spectral-line observations of the ISM with a data cube derived from MHD simulations of molecular clouds, it can find differences that are not found by other analyses. The initial results presented here suggest that the inclusion of self-gravity in numerical simulations is critical for reproducing the correlation behavior of spectra in star-forming molecular clouds.Comment: 29 pages, including 4 figures (tar file submitted as source) See also: http://cfa-www.harvard.edu/~agoodman/scf/velocity_methods.htm

    Disk Properties and Density Structure of the Star-Forming Dense Core B335

    Full text link
    We present subarcsecond resolution dust continuum observations of the protostellar collapse candidate B335 made with the IRAM Plateau de Bure Interferometer at wavelengths of 1.2 and 3.0 mm. These observations probe to < 100 AU size scales and reveal a compact source component that we identify with a circumstellar disk. We analyze these data in concert with previous lower resolution interferometer observations and find a best fit density structure for B335 that consists of a power law envelope with index p=1.55 +/- 0.04 (r < 5000 AU) together with a disk (r < 100 AU) of flux F_{1.2 mm}=21 +/-2 mJy. We estimate a systematic uncertainty in the power law index delta(p) < 0.15, where the largest error comes from the assumed form of the dust temperature falloff with radius. This determination of the inner density structure of B335 has a precision unique amongst protostellar cores, and it is consistent with the r^{-1.5} profile of gravitational free-fall, in accord with basic expectations for the formation of a star. The flux (and implied mass) of the compact component in B335 is typical of the disks around T Tauri stars.Comment: 16 pages, 2 figures. Accepted to the Astrophysical Journal, sched v596 (2003 Oct 10

    Ionized Gas Kinematics and Morphology in Sgr B2 Main on 1000 AU Scales

    Full text link
    We have imaged the Sgr B2 Main region with the Very Large Array in the BnA configuration (Ξbeam\theta_{beam} = 0\farcs13) in both the H52α\alpha (45.453 GHz) radio recombination line (RRL) and 7 mm continuum emission. At a distance of 8500 pc, this spatial resolution corresponds to a physical scale of 0.005 pc (∌\sim1100 AU). The current observations detect H52α\alpha emission in 12 individual ultracompact (UC) and hypercompact (HC) HII regions. Two of the sources with detected H52 α\alpha emission have broad (Δ\DeltaVFWHM∌_{FWHM}\sim50 \kms) recombination lines, and two of the sources show lines with peaks at more than one velocity. We use line parameters from the H52α\alpha lines and our previous H66α\alpha line observations to determine the relative contribution of thermal, pressure and kinematic broadening, and electron density. These new observations suggest that pressure broadening can account for the broad lines in some of the sources, but that gas motions (e.g. turbulence, accretion or outflow) contribute significantly to the broad lines in at least one of the sources (Sgr B2 F3).Comment: 10 pages, 2 figure

    A Sub-arcsecond Survey Toward Class 0 Protostars in Perseus: Searching for Signatures of Protostellar Disks

    Get PDF
    We present a CARMA 1.3 mm continuum survey toward 9 Class 0 protostars in the Perseus molecular cloud at ∌\sim0.3â€Čâ€Č^{\prime\prime} (70 AU) resolution. This study approximately doubles the number of Class 0 protostars observed with spatial resolutions << 100 AU at millimeter wavelengths, enabling the presence of protostellar disks and proto-binary systems to be probed. We detect flattened structures with radii >> 100 AU around 2 sources (L1448 IRS2 and Per-emb-14) and these sources may be strong disk candidates. Marginally-resolved structures with position angles within 30∘^{\circ} of perpendicular to the outflow are found toward 3 protostars (L1448 IRS3C, IRAS 03282+3035, and L1448C) and are considered disk candidates. Two others (L1448 IRS3B and IRAS 03292+3039) have resolved structure, possibly indicative of massive inner envelopes or disks; L1448 IRS3B also has a companion separated by 0.9â€Čâ€Č^{\prime\prime} (∌\sim210 AU). IC348-MMS does not have well-resolved structure and the candidate first hydrostatic core L1451-MMS is marginally resolved on 1â€Čâ€Č^{\prime\prime} scales. The strong disk candidate sources were followed-up with C18^{18}O (J=2→1J=2\rightarrow1) observations, detecting velocity gradients consistent with rotation, but it is unclear if the rotation is Keplerian. We compare the observed visibility amplitudes to radiative transfer models, finding that visibility amplitude ratios suggest a compact component (possibly a disk) is necessary for 5 of 9 Class 0 sources; envelopes alone may explain the other 4 systems. We conclude that there is evidence for the formation of large disks in the Class 0 phase with a range of radii and masses dependent upon their initial formation conditions.Comment: Accepted to ApJ, 58 pages, 19 Figures, 5 Table

    Inner Structure of Protostellar Collapse Candidate B335 Derived from Millimeter-Wave Interferometry

    Get PDF
    We present a study of the density structure of the protostellar collapse candidate B335 using continuum observations from the IRAM Plateau de Bure Interferometer made at wavelengths of 1.2mm and 3.0mm. We analyze these data, which probe spatial scales from 5000 AU to 500 AU, directly in the visibility domain by comparison to synthetic observations constructed from models that assume different physical conditions. This approach allows for much more stringent constraints to be derived from the data than from analysis of images. A single radial power law in density provides a good description of the data, with best fit power law index p=1.65+/-0.05. Through simulations, we quantify the sensitivity of this result to various model uncertainties, including assumptions of temperature distribution, outer boundary, dust opacity spectral index, and an unresolved central component. The largest uncertainty comes from the unknown presence of a centralized point source. A point source with 1.2mm flux of F=12+/-7 mJy reduces the density index to p=1.47+/-0.07. The remaining sources of systematic uncertainty, the most important of which is the temperature distribution, likely contribute a total uncertainty of < 0.2. We therefore find strong evidence that the power law index of the density distribution within 5000 AU is significantly less than the value at larger radii, close to 2.0 from previous studies of dust emission and extinction. These results conform well to the generic paradigm of isolated, low-mass star formation which predicts a power law density index close to p=1.5 for an inner region of gravitational free fall onto the protostar.Comment: Accepted to the Astrophysical Journal; 27 pages, 3 figure

    Flickering of 1.3 cm Sources in Sgr B2: Towards a Solution to the Ultracompact HII Region Lifetime Problem

    Full text link
    Accretion flows onto massive stars must transfer mass so quickly that they are themselves gravitationally unstable, forming dense clumps and filaments. These density perturbations interact with young massive stars, emitting ionizing radiation, alternately exposing and confining their HII regions. As a result, the HII regions are predicted to flicker in flux density over periods of decades to centuries rather than increasing monotonically in size as predicted by simple Spitzer solutions. We have recently observed the Sgr B2 region at 1.3 cm with the VLA in its three hybrid configurations (DnC, CnB and BnA) at a resolution of 0.25''. These observations were made to compare in detail with matched continuum observations from 1989. At 0.25'' resolution, Sgr B2 contains 41 UC HII regions, 6 of which are hypercompact. The new observations of Sgr B2 allow comparison of relative peak flux densites for the HII regions in Sgr B2 over a 23 year time baseline (1989-2012) in one of the most source-rich massive star forming regions in the Milky Way. The new 1.3 cm continuum images indicate that four of the 41 UC HII regions exhibit significant changes in their peak flux density, with one source (K3) dropping in peak flux density, and the other 3 sources (F10.303, F1 and F3) increasing in peak flux density. The results are consistent with statistical predictions from simulations of high mass star formation, suggesting that they offer a solution to the lifetime problem for ultracompact HII regions.Comment: 12 pages, 3 figures, Accepted for publication in the Astrophysical Journal Letter

    Limits on Radio Continuum Emission from a Sample of Candidate Contracting Starless Cores

    Get PDF
    We used the NRAO Very Large Array to search for 3.6 cm continuum emission from embedded protostars in a sample of 8 nearby ``starless'' cores that show spectroscopic evidence for infalling motions in molecular emission lines. We detect a total of 13 compact sources in the eight observed fields to 5 sigma limiting flux levels of typically 0.09 mJy. None of these sources lie within 1' of the central positions of the cores, and they are all likely background objects. Based on an extrapolation of the empirical correlation between the bolometric luminosity and 3.6 cm luminosity for the youngest protostars, these null-detections place upper limits of ~0.1 L_sun (d/140pc)^2 on the luminosities of protostellar sources embedded within these cores. These limits, together with the extended nature of the inward motions inferred from molecular line mapping (Lee et al. 2001), are inconsistent with the inside-out collapse model of singular isothermal spheres and suggest a less centrally condensed phase of core evolution during the earliest stages of star formation.Comment: Accepted to the Astronomical Journal; 12 pages, 1 figur
    • 

    corecore