727 research outputs found
The Spectral Correlation Function -- A New Tool for Analyzing Spectral-Line Maps
The "spectral correlation function" analysis we introduce in this paper is a
new tool for analyzing spectral-line data cubes. Our initial tests, carried out
on a suite of observed and simulated data cubes, indicate that the spectral
correlation function [SCF] is likely to be a more discriminating statistic than
other statistical methods normally applied. The SCF is a measure of similarity
between neighboring spectra in the data cube. When the SCF is used to compare a
data cube consisting of spectral-line observations of the ISM with a data cube
derived from MHD simulations of molecular clouds, it can find differences that
are not found by other analyses. The initial results presented here suggest
that the inclusion of self-gravity in numerical simulations is critical for
reproducing the correlation behavior of spectra in star-forming molecular
clouds.Comment: 29 pages, including 4 figures (tar file submitted as source) See
also: http://cfa-www.harvard.edu/~agoodman/scf/velocity_methods.htm
Disk Properties and Density Structure of the Star-Forming Dense Core B335
We present subarcsecond resolution dust continuum observations of the
protostellar collapse candidate B335 made with the IRAM Plateau de Bure
Interferometer at wavelengths of 1.2 and 3.0 mm. These observations probe to <
100 AU size scales and reveal a compact source component that we identify with
a circumstellar disk. We analyze these data in concert with previous lower
resolution interferometer observations and find a best fit density structure
for B335 that consists of a power law envelope with index p=1.55 +/- 0.04 (r <
5000 AU) together with a disk (r < 100 AU) of flux F_{1.2 mm}=21 +/-2 mJy. We
estimate a systematic uncertainty in the power law index delta(p) < 0.15, where
the largest error comes from the assumed form of the dust temperature falloff
with radius. This determination of the inner density structure of B335 has a
precision unique amongst protostellar cores, and it is consistent with the
r^{-1.5} profile of gravitational free-fall, in accord with basic expectations
for the formation of a star. The flux (and implied mass) of the compact
component in B335 is typical of the disks around T Tauri stars.Comment: 16 pages, 2 figures. Accepted to the Astrophysical Journal, sched
v596 (2003 Oct 10
Ionized Gas Kinematics and Morphology in Sgr B2 Main on 1000 AU Scales
We have imaged the Sgr B2 Main region with the Very Large Array in the BnA
configuration ( = 0\farcs13) in both the H52 (45.453
GHz) radio recombination line (RRL) and 7 mm continuum emission. At a distance
of 8500 pc, this spatial resolution corresponds to a physical scale of 0.005 pc
(1100 AU). The current observations detect H52 emission in 12
individual ultracompact (UC) and hypercompact (HC) HII regions. Two of the
sources with detected H52 emission have broad
(V50 \kms) recombination lines, and two of the sources
show lines with peaks at more than one velocity. We use line parameters from
the H52 lines and our previous H66 line observations to
determine the relative contribution of thermal, pressure and kinematic
broadening, and electron density. These new observations suggest that pressure
broadening can account for the broad lines in some of the sources, but that gas
motions (e.g. turbulence, accretion or outflow) contribute significantly to the
broad lines in at least one of the sources (Sgr B2 F3).Comment: 10 pages, 2 figure
A Sub-arcsecond Survey Toward Class 0 Protostars in Perseus: Searching for Signatures of Protostellar Disks
We present a CARMA 1.3 mm continuum survey toward 9 Class 0 protostars in the
Perseus molecular cloud at 0.3 (70 AU) resolution. This
study approximately doubles the number of Class 0 protostars observed with
spatial resolutions 100 AU at millimeter wavelengths, enabling the presence
of protostellar disks and proto-binary systems to be probed. We detect
flattened structures with radii 100 AU around 2 sources (L1448 IRS2 and
Per-emb-14) and these sources may be strong disk candidates.
Marginally-resolved structures with position angles within 30 of
perpendicular to the outflow are found toward 3 protostars (L1448 IRS3C, IRAS
03282+3035, and L1448C) and are considered disk candidates. Two others (L1448
IRS3B and IRAS 03292+3039) have resolved structure, possibly indicative of
massive inner envelopes or disks; L1448 IRS3B also has a companion separated by
0.9 (210 AU). IC348-MMS does not have well-resolved
structure and the candidate first hydrostatic core L1451-MMS is marginally
resolved on 1 scales. The strong disk candidate sources were
followed-up with CO () observations, detecting velocity
gradients consistent with rotation, but it is unclear if the rotation is
Keplerian. We compare the observed visibility amplitudes to radiative transfer
models, finding that visibility amplitude ratios suggest a compact component
(possibly a disk) is necessary for 5 of 9 Class 0 sources; envelopes alone may
explain the other 4 systems. We conclude that there is evidence for the
formation of large disks in the Class 0 phase with a range of radii and masses
dependent upon their initial formation conditions.Comment: Accepted to ApJ, 58 pages, 19 Figures, 5 Table
Inner Structure of Protostellar Collapse Candidate B335 Derived from Millimeter-Wave Interferometry
We present a study of the density structure of the protostellar collapse
candidate B335 using continuum observations from the IRAM Plateau de Bure
Interferometer made at wavelengths of 1.2mm and 3.0mm. We analyze these data,
which probe spatial scales from 5000 AU to 500 AU, directly in the visibility
domain by comparison to synthetic observations constructed from models that
assume different physical conditions. This approach allows for much more
stringent constraints to be derived from the data than from analysis of images.
A single radial power law in density provides a good description of the data,
with best fit power law index p=1.65+/-0.05. Through simulations, we quantify
the sensitivity of this result to various model uncertainties, including
assumptions of temperature distribution, outer boundary, dust opacity spectral
index, and an unresolved central component. The largest uncertainty comes from
the unknown presence of a centralized point source. A point source with 1.2mm
flux of F=12+/-7 mJy reduces the density index to p=1.47+/-0.07. The remaining
sources of systematic uncertainty, the most important of which is the
temperature distribution, likely contribute a total uncertainty of < 0.2. We
therefore find strong evidence that the power law index of the density
distribution within 5000 AU is significantly less than the value at larger
radii, close to 2.0 from previous studies of dust emission and extinction.
These results conform well to the generic paradigm of isolated, low-mass star
formation which predicts a power law density index close to p=1.5 for an inner
region of gravitational free fall onto the protostar.Comment: Accepted to the Astrophysical Journal; 27 pages, 3 figure
Flickering of 1.3 cm Sources in Sgr B2: Towards a Solution to the Ultracompact HII Region Lifetime Problem
Accretion flows onto massive stars must transfer mass so quickly that they
are themselves gravitationally unstable, forming dense clumps and filaments.
These density perturbations interact with young massive stars, emitting
ionizing radiation, alternately exposing and confining their HII regions. As a
result, the HII regions are predicted to flicker in flux density over periods
of decades to centuries rather than increasing monotonically in size as
predicted by simple Spitzer solutions. We have recently observed the Sgr B2
region at 1.3 cm with the VLA in its three hybrid configurations (DnC, CnB and
BnA) at a resolution of 0.25''. These observations were made to compare in
detail with matched continuum observations from 1989. At 0.25'' resolution, Sgr
B2 contains 41 UC HII regions, 6 of which are hypercompact. The new
observations of Sgr B2 allow comparison of relative peak flux densites for the
HII regions in Sgr B2 over a 23 year time baseline (1989-2012) in one of the
most source-rich massive star forming regions in the Milky Way. The new 1.3 cm
continuum images indicate that four of the 41 UC HII regions exhibit
significant changes in their peak flux density, with one source (K3) dropping
in peak flux density, and the other 3 sources (F10.303, F1 and F3) increasing
in peak flux density. The results are consistent with statistical predictions
from simulations of high mass star formation, suggesting that they offer a
solution to the lifetime problem for ultracompact HII regions.Comment: 12 pages, 3 figures, Accepted for publication in the Astrophysical
Journal Letter
Limits on Radio Continuum Emission from a Sample of Candidate Contracting Starless Cores
We used the NRAO Very Large Array to search for 3.6 cm continuum emission
from embedded protostars in a sample of 8 nearby ``starless'' cores that show
spectroscopic evidence for infalling motions in molecular emission lines. We
detect a total of 13 compact sources in the eight observed fields to 5 sigma
limiting flux levels of typically 0.09 mJy. None of these sources lie within 1'
of the central positions of the cores, and they are all likely background
objects. Based on an extrapolation of the empirical correlation between the
bolometric luminosity and 3.6 cm luminosity for the youngest protostars, these
null-detections place upper limits of ~0.1 L_sun (d/140pc)^2 on the
luminosities of protostellar sources embedded within these cores. These limits,
together with the extended nature of the inward motions inferred from molecular
line mapping (Lee et al. 2001), are inconsistent with the inside-out collapse
model of singular isothermal spheres and suggest a less centrally condensed
phase of core evolution during the earliest stages of star formation.Comment: Accepted to the Astronomical Journal; 12 pages, 1 figur
- âŠ