1,463 research outputs found

    Evaluation of nonmetallic thermal protection materials for the manned space shuttle. Volume 1, task 1: Assessment of technical risks associated with utilization of nonmetallic thermal protection system

    Get PDF
    Technical problems of design and flight qualification of the proposed classes of surface insulation materials and leading edge materials were reviewed. A screening test plan, a preliminary design data test plan and a design data test plan were outlined. This program defined the apparent critical differences between the surface insulators and the leading edge materials, structuring specialized screening test plans for each of these two classes of materials. Unique testing techniques were shown to be important in evaluating the structural interaction aspects of the surface insulators and a separate task was defined to validate the test plan. In addition, a compilation was made of available information on proposed material (including metallic TPS), previous shuttle programs, pertinent test procedures, and other national programs of merit. This material was collected and summarized in an informally structured workbook

    Low-frequency noise reduction of spacecraft structures

    Get PDF
    Low frequency noise reduction of spacecraft structure

    Simplified Methodology to Estimate the Maximum Liquid Helium (LHe) Cryostat Pressure from a Vacuum Jacket Failure

    Get PDF
    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared astronomical observation experiments. These experiments carry sensors cooled to liquid helium temperatures. The liquid helium supply is contained in large (i.e., 10 liters or more) vacuum-insulated dewars. Should the dewar vacuum insulation fail, the inrushing air will condense and freeze on the dewar wall, resulting in a large heat flux on the dewar's contents. The heat flux results in a rise in pressure and the actuation of the dewar pressure relief system. A previous NASA Engineering and Safety Center (NESC) assessment provided recommendations for the wall heat flux that would be expected from a loss of vacuum and detailed an appropriate method to use in calculating the maximum pressure that would occur in a loss of vacuum event. This method involved building a detailed supercritical helium compressible flow thermal/fluid model of the vent stack and exercising the model over the appropriate range of parameters. The experimenters designing science instruments for SOFIA are not experts in compressible supercritical flows and do not generally have access to the thermal/fluid modeling packages that are required to build detailed models of the vent stacks. Therefore, the SOFIA Program engaged the NESC to develop a simplified methodology to estimate the maximum pressure in a liquid helium dewar after the loss of vacuum insulation. The method would allow the university-based science instrument development teams to conservatively determine the cryostat's vent neck sizing during preliminary design of new SOFIA Science Instruments. This report details the development of the simplified method, the method itself, and the limits of its applicability. The simplified methodology provides an estimate of the dewar pressure after a loss of vacuum insulation that can be used for the initial design of the liquid helium dewar vent stacks. However, since it is not an exact tool, final verification of the dewar pressure vessel design requires a complete, detailed real fluid compressible flow model of the vent stack. The wall heat flux resulting from a loss of vacuum insulation increases the dewar pressure, which actuates the pressure relief mechanism and results in high-speed flow through the dewar vent stack. At high pressures, the flow can be choked at the vent stack inlet, at the exit, or at an intermediate transition or restriction. During previous SOFIA analyses, it was observed that there was generally a readily identifiable section of the vent stack that would limit the flow e.g., a small diameter entrance or an orifice. It was also found that when the supercritical helium was approximated as an ideal gas at the dewar condition, the calculated mass flow rate based on choking at the limiting entrance or transition was less than the mass flow rate calculated using the detailed real fluid model2. Using this lower mass flow rate would yield a conservative prediction of the dewars wall heat flux capability. The simplified method of the current work was developed by building on this observation

    Combinatorial Properties of Triangle-Free Rectangle Arrangements and the Squarability Problem

    Full text link
    We consider arrangements of axis-aligned rectangles in the plane. A geometric arrangement specifies the coordinates of all rectangles, while a combinatorial arrangement specifies only the respective intersection type in which each pair of rectangles intersects. First, we investigate combinatorial contact arrangements, i.e., arrangements of interior-disjoint rectangles, with a triangle-free intersection graph. We show that such rectangle arrangements are in bijection with the 4-orientations of an underlying planar multigraph and prove that there is a corresponding geometric rectangle contact arrangement. Moreover, we prove that every triangle-free planar graph is the contact graph of such an arrangement. Secondly, we introduce the question whether a given rectangle arrangement has a combinatorially equivalent square arrangement. In addition to some necessary conditions and counterexamples, we show that rectangle arrangements pierced by a horizontal line are squarable under certain sufficient conditions.Comment: 15 pages, 13 figures, extended version of a paper to appear at the International Symposium on Graph Drawing and Network Visualization (GD) 201

    Implications of Diet for the Extinction of Saber-Toothed Cats and American Lions

    Get PDF
    The saber-toothed cat, Smilodon fatalis, and American lion, Panthera atrox, were among the largest terrestrial carnivores that lived during the Pleistocene, going extinct along with other megafauna ~12,000 years ago. Previous work suggests that times were difficult at La Brea (California) during the late Pleistocene, as nearly all carnivores have greater incidences of tooth breakage (used to infer greater carcass utilization) compared to today. As Dental Microwear Texture Analysis (DMTA) can differentiate between levels of bone consumption in extant carnivores, we use DMTA to clarify the dietary niches of extinct carnivorans from La Brea. Specifically, we test the hypothesis that times were tough at La Brea with carnivorous taxa utilizing more of the carcasses. Our results show no evidence of bone crushing by P. atrox, with DMTA attributes most similar to the extant cheetah, Acinonyx jubatus, which actively avoids bone. In contrast, S. fatalis has DMTA attributes most similar to the African lion Panthera leo, implying that S. fatalis did not avoid bone to the extent previously suggested by SEM microwear data. DMTA characters most indicative of bone consumption (i.e., complexity and textural fill volume) suggest that carcass utilization by the extinct carnivorans was not necessarily more complete during the Pleistocene at La Brea; thus, times may not have been tougher than the present. Additionally, minor to no significant differences in DMTA attributes from older (~30-35 Ka) to younger (~11.5 Ka) deposits offer little evidence that declining prey resources were a primary cause of extinction for these large cats

    Identification of a chemical fingerprint linking the undeclared 2017 release of 106Ru to advanced nuclear fuel reprocessing

    Get PDF
    The undeclared release and subsequent detection of ruthenium-106 (106Ru) across Europe from late September to early October of 2017 prompted an international effort to ascertain the circumstances of the event. While dispersion modeling, corroborated by ground deposition measurements, has narrowed possible locations of origin, there has been a lack of direct empirical evidence to address the nature of the release. This is due to the absence of radiological and chemical signatures in the sample matrices, considering that such signatures encode the history and circumstances of the radioactive contaminant. In limiting cases such as this, we herein introduce the use of selected chemical transformations to elucidate the chemical nature of a radioactive contaminant as part of a nuclear forensic investigation. Using established ruthenium polypyridyl chemistry, we have shown that a small percentage (1.2 ± 0.4%) of the radioactive 106Ru contaminant exists in a polychlorinated Ru(III) form, partly or entirely as β-106RuCl3, while 20% is both insoluble and chemically inert, consistent with the occurrence of RuO2, the thermodynamic endpoint of the volatile RuO4. Together, these findings present a clear signature for nuclear fuel reprocessing activity, specifically the reductive trapping of the volatile and highly reactive RuO4, as the origin of the release. Considering that the previously established 103Ru:106Ru ratio indicates that the spent fuel was unusually young with respect to typical reprocessing protocol, it is likely that this exothermic trapping process proved to be a tipping point for an already turbulent mixture, leading to an abrupt and uncontrolled release

    Coherent Quantum Engineering of Free-Space Laser Cooling

    Get PDF
    We perform a quantitative analysis of the cooling dynamics of three-level atomic systems interacting with two distinct lasers. Employing sparse-matrix techniques, we find numerical solutions to the fully quantized master equation in steady state. Our method allows straightforward determination of laser-cooling temperatures without the ambiguity often accompanied by semiclassical calculations, and more quickly than non-sparse techniques. Our calculations allow us to develop an understanding of the regimes of cooling, as well as a qualitative picture of the mechanism, related to the phenomenon of electromagnetically induced transparency. Effects of the induced asymmetric Fano-type lineshapes affect the detunings required for optimum cooling, as well as the predicted minimum temperatures which can be lower than the Doppler limit for either transition.Comment: 5 pages, 3 figure

    Evidence of strong stabilizing effects on the evolution of boreoeutherian (Mammalia) dental proportions.

    Get PDF
    The dentition is an extremely important organ in mammals with variation in timing and sequence of eruption, crown morphology, and tooth size enabling a range of behavioral, dietary, and functional adaptations across the class. Within this suite of variable mammalian dental phenotypes, relative sizes of teeth reflect variation in the underlying genetic and developmental mechanisms. Two ratios of postcanine tooth lengths capture the relative size of premolars to molars (premolar-molar module, PMM), and among the three molars (molar module component, MMC), and are known to be heritable, independent of body size, and to vary significantly across primates. Here, we explore how these dental traits vary across mammals more broadly, focusing on terrestrial taxa in the clade of Boreoeutheria (Euarchontoglires and Laurasiatheria). We measured the postcanine teeth of N = 1,523 boreoeutherian mammals spanning six orders, 14 families, 36 genera, and 49 species to test hypotheses about associations between dental proportions and phylogenetic relatedness, diet, and life history in mammals. Boreoeutherian postcanine dental proportions sampled in this study carry conserved phylogenetic signal and are not associated with variation in diet. The incorporation of paleontological data provides further evidence that dental proportions may be slower to change than is dietary specialization. These results have implications for our understanding of dental variation and dietary adaptation in mammals

    A systematic review and meta-analysis of childhood health utilities

    Get PDF
    Background: A common feature of most reviews or catalogues of health utilities has been their focus on adult health states or derivation of values from adult populations. More generally, utility measurement in or on behalf of children has been constrained by a number of methodological concerns. The objective of this study was to conduct the first comprehensive systematic review and meta-analysis of primary utility data for childhood conditions and descriptors and to determine the effects of methodological factors on childhood utilities. Methods: The review followed PRISMA guidelines. PubMed, Embase, Web of Science, PsycINFO, EconLit, CINAHL and Cochrane Library were searched for primary studies reporting health utilities for childhood conditions or descriptors using direct or indirect valuation methods. The Pediatric Economic Database Evaluation (PEDE) was also searched for cost-utility analyses with primary utility values. Mean or median utilities for each of the main samples were catalogued, whilst weighted averages of utilities for each health condition were estimated, by valuation method. Mixed-effects meta-regression using hierarchical linear modelling was conducted for the most common valuation methods to estimate the utility decrement for each health condition category relative to general childhood population health, as well as the independent effects of methodological factors. Results: The literature searches resulted in 272 eligible studies. These yielded 3,414 utilities when all sub-groups were considered, covering all ICD-10 chapters relevant to childhood health, 19 valuation methods, 12 respondent types, 8 modes of administration, and data from 36 countries. A total of 1,191 utility values were obtained when only main study samples were considered and these were catalogued by health condition or descriptor, and methodological characteristics. 1,073 mean utilities for main samples were used for fixed-effects meta-analysis by health condition and valuation method. Mixed-effects meta-regressions estimated that 53 of 76 ICD-10 delineated health conditions valued using the HUI3 were associated with statistically significant utility decrements relative to general population health, whilst 38 of 57 valued using a Visual Analogue Scale (VAS) were associated with statistically significant VAS decrements. For both methods, parental proxy-assessment was associated with overestimation of values, whilst adolescents reported lower values than children under 12 years. VAS responses were more heavily influenced by mode of administration than the HUI3

    Quenched Narrow-Line Laser Cooling of 40Ca to Near the Photon Recoil Limit

    Get PDF
    We present a cooling method that should be generally applicable to atoms with narrow optical transitions. This technique uses velocity-selective pulses to drive atoms towards a zero-velocity dark state and then quenches the excited state to increase the cooling rate. We demonstrate this technique of quenched narrow-line cooling by reducing the 1-D temperature of a sample of neutral 40Ca atoms. We velocity select and cool with the 1S0(4s2) to 3P1(4s4p) 657 nm intercombination line and quench with the 3P1(4s4p) to 1S0(4s5s) intercombination line at 553 nm, which increases the cooling rate eight-fold. Limited only by available quenching laser power, we have transferred 18 % of the atoms from our initial 2 mK velocity distribution and achieved temperatures as low as 4 microK, corresponding to a vrms of 2.8 cm/s or 2 recoils at 657 nm. This cooling technique, which is closely related to Raman cooling, can be extended to three dimensions.Comment: 5 pages, 4 figures; Submitted to PRA Rapid Communication
    corecore