30,056 research outputs found
Pairing and density-wave phases in Boson-Fermion mixtures at fixed filling
We study a mixture of fermionic and bosonic cold atoms on a two-dimensional
optical lattice, where the fermions are prepared in two hyperfine (isospin)
states and the bosons have Bose-Einstein condensed (BEC). The coupling between
the fermionic atoms and the bosonic fluctuations of the BEC has similarities
with the electron-phonon coupling in crystals. We study the phase diagram for
this system at fixed fermion density of one per site (half-filling). We find
that tuning of the lattice parameters and interaction strengths (for
fermion-fermion, fermion-boson and boson-boson interactions) drives the system
to undergo antiferromagnetic ordering, s-wave and d-wave pairing
superconductivity or a charge density wave phase. We use functional
renormalization group analysis where retardation effects are fully taken into
account by keeping the frequency dependence of the interaction vertices and
self-energies. We calculate response functions and also provide estimates of
the energy gap associated with the dominant order, and how it depends on
different parameters of the problem.Comment: 5 pages, 3 figure
Renormalization group approach to spinor Bose-Fermi mixtures in a shallow optical lattice
We study a mixture of ultracold spin-half fermionic and spin-one bosonic
atoms in a shallow optical lattice where the bosons are coupled to the fermions
via both density-density and spin-spin interactions. We consider the parameter
regime where the bosons are in a superfluid ground state, integrate them out,
and obtain an effective action for the fermions. We carry out a renormalization
group analysis of this effective fermionic action at low temperatures, show
that the presence of the spinor bosons may lead to a separation of Fermi
surfaces of the spin-up and spin-down fermions, and investigate the parameter
range where this phenomenon occurs. We also calculate the susceptibilities
corresponding to the possible superfluid instabilities of the fermions and
obtain their possible broken-symmetry ground states at low temperatures and
weak interactions.Comment: 8 pages, 8 figs v
Renormalization-group approach to superconductivity: from weak to strong electron-phonon coupling
We present the numerical solution of the renormalization group (RG) equations
derived in Ref. [1], for the problem of superconductivity in the presence of
both electron-electron and electron-phonon coupling at zero temperature. We
study the instability of a Fermi liquid to a superconductor and the RG flow of
the couplings in presence of retardation effects and the crossover from weak to
strong coupling. We show that our numerical results provide an ansatz for the
analytic solution of the problem in the asymptotic limits of weak and strong
coupling.Comment: 8 pages, 3 figures, conference proceedings for the Electron
Correlations and Materials Properties, in Kos, Greece, July 5-9, 200
Charge Transport Scalings in Turbulent Electroconvection
We describe a local-power law scaling theory for the mean dimensionless
electric current in turbulent electroconvection. The experimental system
consists of a weakly conducting, submicron thick liquid crystal film supported
in the annulus between concentric circular electrodes. It is driven into
electroconvection by an applied voltage between its inner and outer edges. At
sufficiently large voltage differences, the flow is unsteady and electric
charge is turbulently transported between the electrodes. Our theoretical
development, which closely parallels the Grossmann-Lohse model for turbulent
thermal convection, predicts the local-power law . and are dimensionless
numbers that are similar to the Rayleigh and Prandtl numbers of thermal
convection, respectively. The dimensionless function , which is
specified by the model, describes the dependence of on the aspect ratio
. We find that measurements of are consistent with the theoretical
model.Comment: 12 pages, 7 figures, Submitted to Phys. Rev. E. See also
http://www.physics.utoronto.ca/nonlinea
Cycle-resistant credit systems: learning from Hong Kong’s experience
Hong Kong’s home mortgage market has remained among the world’s most stable. Supervisory authorities point to the 70 percent loan-to-value policy.Mortgage loans ; Housing - Prices ; Hong Kong
Optical probes of the quantum vacuum: The photon polarization tensor in external fields
The photon polarization tensor is the central building block of an effective
theory description of photon propagation in the quantum vacuum. It accounts for
the vacuum fluctuations of the underlying theory, and in the presence of
external electromagnetic fields, gives rise to such striking phenomena as
vacuum birefringence and dichroism. Standard approximations of the polarization
tensor are often restricted to on-the-light-cone dynamics in homogeneous
electromagnetic fields, and are limited to certain momentum regimes only. We
devise two different strategies to go beyond these limitations: First, we aim
at obtaining novel analytical insights into the photon polarization tensor for
homogeneous fields, while retaining its full momentum dependence. Second, we
employ wordline numerical methods to surpass the constant-field limit.Comment: 13 pages, 4 figures; typo in Eq. (5) corrected (matches journal
version
Superconductivity in Inhomogeneous Hubbard Models
We present a controlled perturbative approach to the low temperature phase
diagram of highly inhomogeneous Hubbard models in the limit of small coupling,
, between clusters. We apply this to the dimerized and checkerboard models.
The dimerized model is found to behave like a doped semiconductor, with a
Fermi-liquid groundstate with parameters ({\it e.g.} the effective mass) which
are smooth functions of the Hubbard interaction, . By contrast, the
checkerboard model has a nodeless d-wave superconducting state (preformed pair
condensate, -BEC) for , which smoothly crosses over to an
intermediate BCS-like superconducting phase (-BCS), also with no nodal
quasi-particles, for , which gives way to a
Fermi liquid phase at large .Comment: 7 pages, a sign error in Eq.(3) has been corrected and its
consequence has been discussed with updated figure
- …