221 research outputs found
Alice in Wonderland: The effects of body size and movement on children’s size perception and body representation in virtual reality
Previous work shows that in adults, illusory embodiment of a virtual avatar can be induced using congruent visuomotor cues. Furthermore, embodying different-sized avatars influences adults’ perception of their environment’s size. This study (N = 92) investigated whether children are also susceptible to such embodiment and size illusions. Adults and 5-year-old children viewed a first-person perspective of different-sized avatars moving either congruently or incongruently with their own body. Participants rated their feelings of embodiment over the avatar and also estimated the sizes of their body and objects in the environment. Unlike adults, children embodied the avatar regardless of visuomotor congruency. Both adults and children freely embodied different-sized avatars, and this affected their size perception in the surrounding virtual environment; they felt that objects were larger in a small body and vice versa in a large body. In addition, children felt that their body had grown in the large body condition. These findings have important implications for both our theoretical understanding of own-body representation, and our knowledge of perception in virtual environments
My body until proven otherwise: Exploring the time course of the full body illusion
Evidence from the Full Body Illusion (FBI) has shown that adults can embody full bodies which are not their own when they move synchronously with their own body or are viewed from a first-person perspective. However, there is currently no consensus regarding the time course of the illusion. Here, for the first time, we examined the effect of visuomotor synchrony (synchronous/asynchronous/no movement) on the FBI over time. Surprisingly, we found evidence of embodiment over a virtual body after five seconds in all conditions. Embodiment decreased with increased exposure to asynchronous movement, but remained high in synchronous and no movement conditions. We suggest that embodiment of a body seen from a first-person perspective is felt by default, and that embodiment can then be lost in the face of contradictory cues. These results have significant implications for our understanding of how multisensory cues contribute to embodiment
Comparison of Two Quantitative Methods of Discerning Airspace Enlargement in Smoke-Exposed Mice
In this work, we compare two methods for evaluating and quantifying pulmonary airspace enlargement in a mouse model of chronic cigarette smoke exposure. Standard stereological sample preparation, sectioning, and imaging of mouse lung tissues were performed for semi-automated acquisition of mean linear intercept (Lm) data. After completion of the Lm measurements, D2, a metric of airspace enlargement, was measured in a blinded manner on the same lung images using a fully automated technique developed in-house. An analysis of variance (ANOVA) shows that although Lm was able to separate the smoke-exposed and control groups with statistical significance (p = 0.034), D2 was better able to differentiate the groups (p<0.001) and did so without any overlap between the control and smoke-exposed individual animal data. In addition, the fully automated implementation of D2 represented a time savings of at least 24x over semi-automated Lm measurements. Although D2 does not provide 3D stereological metrics of airspace dimensions as Lm does, results show that it has higher sensitivity and specificity for detecting the subtle airspace enlargement one would expect to find in mild or early stage emphysema. Therefore, D2 may serve as a more accurate screening measure for detecting early lung disease than Lm
Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation
A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen et al. (Ann Biomed Eng 28:1281–1299, 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of ‘large’ arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the ‘smaller’ arteries and veins of radii ≥ 50 μ m. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment for circulatory diseases within the lung
Histochemical and cellular changes accompanying the appearance of lung fibrosis in an experimental mouse model for Hermansky Pudlak syndrome
Hermansky Pudlak syndrome (HPS) is a heterogeneous recessive genetic disease with a tendency to develop lung fibrosis with aging. A mouse strain with two mutant HPS genes affecting separate vesicle trafficking pathways, C57BL/6-Hps1ep-Ap3b1pe, exhibits severe lung abnormalities at young ages, including enlarged alveolar type II (ATII) cells with giant lamellar bodies and foamy alveolar macrophages (AMs), which are readily identified histologically. In this study, the appearance of lung fibrosis in older animals was studied using classical histological and biochemical methods. The HPS double mutant mice, but not Chediak Higashi syndrome (C57BL/6-Lystbg-J-J, CHS) or C57BL/6J black control (WT) mice, were found to develop lung fibrosis at about 17 months of age using Masson trichrome staining, which was confirmed by hydroxyproline analysis. TGF β1 levels were elevated in bronchial alveolar lavage samples at all ages tested in the double mutant, but not WT or CHS mice, indicative of a prefibrotic condition in this experimental strain; and AMs were highly positive for this cytokine using immunohistochemistry staining. Prosurfactant protein C staining for ATII cells showed redistribution and dysmorphism of these cells with aging, but there was no evidence for epithelial-mesenchymal transition of ATII cells by dual staining for prosurfactant C protein and α-smooth muscle actin. This investigation showed that the HPS double mutant mouse strain develops interstitial pneumonia (HPSIP) past 1 year of age, which may be initiated by abnormal ATII cells and exacerbated by AM activation. With prominent prefibrotic abnormalities, this double mutant may serve as a model for interventive therapy in HPS
Environmental and genetic risk factors and gene-environment interactions in the pathogenesis of chronic obstructive lung disease.
Current understanding of the pathogenesis of chronic obstructive pulmonary disease (COPD), a source of substantial morbidity and mortality in the United States, suggests that chronic inflammation leads to the airways obstruction and parenchymal destruction that characterize this condition. Environmental factors, especially tobacco smoke exposure, are known to accelerate longitudinal decline of lung function, and there is substantial evidence that upregulation of inflammatory pathways plays a vital role in this process. Genetic regulation of both inflammatory responses and anti-inflammatory protective mechanisms likely underlies the heritability of COPD observed in family studies. In alpha-1 protease inhibitor deficiency, the only genetic disorder known to cause COPD, lack of inhibition of elastase activity, results in the parenchymal destruction of emphysema. Other genetic polymorphisms have been hypothesized to alter the risk of COPD but have not been established as causes of this condition. It is likely that multiple genetic factors interacting with each other and with a number of environmental agents will be found to result in the development of COPD
Polymorphism of SERPINE2 gene is associated with pulmonary emphysema in consecutive autopsy cases
<p>Abstract</p> <p>Background</p> <p>The <it>SERPINA1</it>, <it>SERPINA3</it>, and <it>SERPINE2 </it>genes, which encode antiproteases, have been proposed to be susceptible genes for of chronic obstructive pulmonary disease (COPD) and related phenotypes. Whether they are associated with emphysema is not known.</p> <p>Methods</p> <p>Twelve previously reported single nucleotide polymorphisms (SNPs) in <it>SERPINA1 </it>(rs8004738, rs17751769, rs709932, rs11832, rs1303, rs28929474, and rs17580), <it>SERPINA3 </it>(rs4934, rs17473, and rs1800463), and <it>SERPINE2 </it>(rs840088 and rs975278) were genotyped in samples obtained from 1,335 consecutive autopsies of elderly Japanese people. The association between these SNPs and the severity of emphysema, as assessed using macroscopic scores, was determined.</p> <p>Results</p> <p>Emphysema of more than moderate degree was detected in 189 subjects (14.1%) and showed a significant gender difference (males, 20.5% and females, 7.0%; p < 0.0001). Among the 12 examined SNPs, only rs975278 in the <it>SERPINE2 </it>gene was positively associated with emphysema. Unlike the major alleles, homozygous minor alleles of rs975278 were associated with emphysema (odds ratio (OR) = 1.54; 95% confidence interval (CI) = 1.02-2.30; p = 0.037) and the association was very prominent in smokers (OR = 2.02; 95% CI = 1.29-3.15; p = 0.002).</p> <p>Conclusions</p> <p><it>SERPINE2 </it>may be a risk factor for the development of emphysema and its association with emphysema may be stronger in smokers.</p
Targeting IL-1β and IL-17A driven inflammation during influenza-induced exacerbations of chronic lung inflammation.
For patients with chronic lung diseases, such as chronic obstructive pulmonary disease (COPD), exacerbations are life-threatening events causing acute respiratory distress that can even lead to hospitalization and death. Although a great deal of effort has been put into research of exacerbations and potential treatment options, the exact underlying mechanisms are yet to be deciphered and no therapy that effectively targets the excessive inflammation is available. In this study, we report that interleukin-1β (IL-1β) and interleukin-17A (IL-17A) are key mediators of neutrophilic inflammation in influenza-induced exacerbations of chronic lung inflammation. Using a mouse model of disease, our data shows a role for IL-1β in mediating lung dysfunction, and in driving neutrophilic inflammation during the whole phase of viral infection. We further report a role for IL-17A as a mediator of IL-1β induced neutrophilia at early time points during influenza-induced exacerbations. Blocking of IL-17A or IL-1 resulted in a significant abrogation of neutrophil recruitment to the airways in the initial phase of infection or at the peak of viral replication, respectively. Therefore, IL-17A and IL-1β are potential targets for therapeutic treatment of viral exacerbations of chronic lung inflammation
Pleural Tuberculosis in Patients with Early HIV Infection Is Associated with Increased TNF-Alpha Expression and Necrosis in Granulomas
Although granulomas may be an essential host response against persistent antigens, they are also associated with immunopathology. We investigated whether HIV co-infection affects histopathological appearance and cytokine profiles of pleural granulomas in patients with active pleural tuberculosis (TB). Granulomas were investigated in pleural biopsies from HIV positive and negative TB pleuritis patients. Granulomas were characterised as necrotic or non-necrotic, graded histologically and investigated for the mRNA expression of IL-12, IFN-γ, TNF-α and IL-4 by in situ hybridisation. In all TB patients a mixed Th1/Th2 profile was noted. Necrotic granulomas were more evident in HIV positive patients with a clear association between TNF-α and necrosis. This study demonstrates immune dysregulation which may include TNF-α-mediated immunopathology at the site of disease in HIV infected pleural TB patients
- …