625 research outputs found

    An Artificial SEI Layer Based on an Inorganic Coordination Polymer with Self-Healing Ability for Long-Lived Rechargeable Lithium-Metal Batteries

    Get PDF
    Upon immersion of a lithium (Li) anode into a diluted 0.05 to 0.20 M dimethoxyethane solution of the phosphoric-acid derivative (CF3_{3}CH2_{2}O)2_{2}P(O)OH (HBFEP), an artificial solid-electrolyte interphase (SEI) is generated on the Li-metal surface. Hence, HBFEP reacts on the surface to the corresponding Li salt (LiBFEP), which is a Li-ion conducting inorganic coordination polymer. This film exhibits – due to the reversibly breaking ionic bonds – self-healing ability upon cycling-induced volume expansion of Li. The presence of LiBFEP as the major component in the artificial SEI is proven by ATR-IR and XPS measurements. SEM characterization of HBFEP-treated Li samples reveals porous layers on top of the Li surface with at least 3 Όm thickness. Li−Li symmetrical cells with HBFEP-modified Li electrodes show a three- to almost fourfold cycle-lifetime increase at 0.1 mA cm−2^{-2} in a demanding model electrolyte that facilitates fast battery failure (1 M LiOTf in TEGDME). Hence, the LiBFEP-enriched layer apparently acts as a Li-ion conducting protection barrier between Li and the electrolyte, enhancing the rechargeability of Li electrodes

    Incremental expansions for Hubbard-Peierls systems

    Full text link
    The ground state energies of infinite half-filled Hubbard-Peierls chains are investigated combining incremental expansion with exact diagonalization of finite chain segments. The ground state energy of equidistant infinite Hubbard (Heisenberg) chains is calculated with a relative error of less than 3⋅10−33 \cdot 10^{-3} for all values of UU using diagonalizations of 12-site (20-site) chain segm ents. For dimerized chains the dimerization order parameter dd as a function of the onsite repulsion interaction UU has a maximum at nonzero values of UU, if the electron-phonon coupling gg is lower than a critical value gcg_c. The critical value gcg_c is found with high accuracy to be gc=0.69g_c=0.69. For smaller values of gg the position of the maximum of d(U)d(U) is approximately 3t3t, and rapidly tends to zero as gg approaches gcg_c from below. We show how our method can be applied to calculate breathers for the problem of phonon dynamics in Hubbard-Peierls systems.Comment: 4 Pages, 3 Figures, REVTE

    Probability models of wastewater treatment plant operation

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/21834/1/0000237.pd

    Angle-dependent normalization of neutron-proton differential cross sections

    Get PDF
    Systematic errors in the database of npnp differential cross sections below 350 MeV are studied. By applying angle-dependent normalizations with the help of the energy-dependent Nijmegen partial-wave analysis PWA93 the χ2\chi^2-values of some seriously flawed data sets can be reduced significantly at the expense of a few degrees of freedom. It turns out that in these special cases the renormalized data sets can be made statistically acceptable such that they do not have to be discarded any longer in partial-wave analyses of the two-nucleon scattering data.Comment: 11 pages, 1 figure; expanded versio

    Under what conditions does bureaucracy matter in the making of global public policies?

    Get PDF
    First published: 16 November 2022This study investigates how configurations of bureaucratic autonomy, policy complexity and political contestation allow international public administrations (IPAs) to influence policymaking within international organizations. A fuzzy-set Qualitative Comparative Analysis of 17 policy decisions in four organizations (FAO, WHO, ILO, UNESCO) shows that all IPAs studied can be influential in favorable contexts. When policies are both contested and complex, even IPAs lacking autonomy can influence policy. If either complexity or contestation is absent, however, it is the variant of autonomy of will that helps the IPA exploit procedural strategies of influence. Low autonomy of will, among other factors, explains why IPAs cannot exert influence. Conversely, the variant of autonomy of action appears largely irrelevant. The study provides new insights into the role of bureaucracy beyond the state, exemplifying how research of bureaucratic influence can yield more systematic results in various empirical settings

    Weight‐of‐Evidence Approach for Assessing Removal of Metals from the Water Column for Chronic Environmental Hazard Classification

    Full text link
    The United Nations and the European Union have developed guidelines for the assessment of long‐term (chronic) chemical environmental hazards. This approach recognizes that these hazards are often related to spillage of chemicals into freshwater environments. The goal of the present study was to examine the concept of metal ion removal from the water column in the context of hazard assessment and classification. We propose a weight‐of‐evidence approach that assesses several aspects of metals including the intrinsic properties of metals, the rate at which metals bind to particles in the water column and settle, the transformation of metals to nonavailable and nontoxic forms, and the potential for remobilization of metals from sediment. We developed a test method to quantify metal removal in aqueous systems: the extended transformation/dissolution protocol (T/DP‐E). The method is based on that of the Organisation for Economic Co‐operation and Development (OECD). The key element of the protocol extension is the addition of substrate particles (as found in nature), allowing the removal processes to occur. The present study focused on extending this test to support the assessment of metal removal from aqueous systems, equivalent to the concept of “degradability” for organic chemicals. Although the technical aspects of our proposed method are different from the OECD method for organics, its use for hazard classification is equivalent. Models were developed providing mechanistic insight into processes occurring during the T/DP‐E method. Some metals, such as copper, rapidly decreased (within 96 h) under the 70% threshold criterion, whereas others, such as strontium, did not. A variety of method variables were evaluated and optimized to allow for a reproducible, realistic hazard classification method that mimics reasonable worst‐case scenarios. We propose that this method be standardized for OECD hazard classification via round robin (ring) testing to ascertain its intra‐ and interlaboratory variability. Environ Toxicol Chem 2019;38:1839–1849. © 2019 SETAC.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151334/1/etc4470_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151334/2/etc4470.pd

    Structure-Activity Relationship and Mode-Of-Action Studies Highlight 1-(4-Biphenylylmethyl)-1H-imidazole-Derived Small Molecules as Potent CYP121 Inhibitors

    Get PDF
    CYP121 of Mycobacterium tuberculosis (Mtb) is an essential target for the development of novel potent drugs against tuberculosis (TB). Besides known antifungal azoles, further compounds of the azole class were recently identified as CYP121 inhibitors with antimycobacterial activity. Herein, we report the screening of a similarity-oriented library based on the former hit compound, the evaluation of affinity toward CYP121, and activity against M. bovis BCG. The results enabled a comprehensive SAR study, which was extended through the synthesis of promising compounds and led to the identification of favorable features for affinity and/or activity and hit compounds with 2.7-fold improved potency. Mode of action studies show that the hit compounds inhibit substrate conversion and highlighted CYP121 as the main antimycobacterial target of our compounds. Exemplified complex crystal structures of CYP121 with three inhibitors reveal a common binding site. Engaging in both hydrophobic interactions as well as hydrogen bonding to the sixth iron ligand, our compounds block a solvent channel leading to the active site heme. Additionally, we report the first CYP inhibitors that are able to reduce the intracellular replication of M. bovis BCG in macrophages, emphasizing their potential as future drug candidates against TB.Fil: Walter, Isabell. Helmholtz Institute for Pharmaceutical Research Saarland; AlemaniaFil: Adam, Sebastian. Universitat Saarland; AlemaniaFil: Gentilini, Maria Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina. Twincore; AlemaniaFil: Kany, Andreas M.. Helmholtz Institute for Pharmaceutical Research Saarland; AlemaniaFil: Brengel, Christian. Helmholtz Institute for Pharmaceutical Research Saarland; AlemaniaFil: Thomann, Andreas. Helmholtz Institute for Pharmaceutical Research Saarland; AlemaniaFil: Sparwasser, Tim. Twincore; AlemaniaFil: Köhnke, Jesko. Universitat Saarland; AlemaniaFil: Hartmann, Rolf W.. Universitat Saarland; Alemania. Helmholtz Institute for Pharmaceutical Research Saarland; Alemani

    Driving the atom by atomic fluorescence: analytic results for the power and noise spectra

    Get PDF
    We study how the spectral properties of resonance fluorescence propagate through a two-atom system. Within the weak-driving-field approximation we find that, as we go from one atom to the next, the power spectrum exhibits both sub-natural linewidth narrowing and large asymmetries while the spectrum of squeezing narrows but remains otherwise unchanged. Analytical results for the observed spectral features of the fluorescence are provided and their origin is thoroughly discussed.Comment: 13 pages, 5 figures; to be published in Phys. Rev. A Changed title and conten

    Time-Resolved Coherent Photoelectron Spectroscopy of Quantized Electronic States on Metal Surfaces

    Get PDF
    Time-resolved two-photon photoemission in combination with the coherent excitation of several quantum states was used to study the ultrafast electron dynamics of imagepotential states on metal surfaces. For a (100) surface of copper, the spectroscopy of quantum beats made previously unresolved high-order states (quantum number n Ն 4) experimentally accessible. By exciting electrons close to the vacuum level, electron wave packets could be created and detected that described the quasi-classical periodic motion of weakly bound electrons. They traveled more than 200 Å away from the surface and oscillated back and forth with a period of 800 femtoseconds. Photoelectron spectroscopy has developed into one of the most versatile and successful tools for surface studies. Particularly attractive features of this technique are the high surface sensitivity associated with the low escape depth of the photoelectrons and the capability of angle-resolved photoemission to completely characterize electronic states in energy and momentum space (1). Recently, these features have been combined with ultrafast laser excitation for direct time-domain investigations of electron dynamics at surfaces (2). Here, we demonstrate another facet of this powerful technique, the investigation of coherence phenomena in real time. In contrast to experimental methods that rely merely on intensities, coherent spectroscopies offer the unique capability of accessing not only the amplitudes but also the phases of the wave functions of interest (3). This technique dramatically increases the amount of information that one is able to obtain about the temporal evolution of fast processes. In this report, we discuss the dynamics of image-potential states, that is, the quantized excited states of electrons that exist in front of many metal surfaces (4, 5). Using femtosecond time-resolved two-photon photoemission (2PPE), we observed the interference between the wave functions of neighboring eigenstates and the quasi-classical motion of electron wave packets created by the coherent superposition of several quantum states. Recently, the imaging of the static charge density of related surface electronic (ground) states in real space with the scanning tunneling microscope has attracted considerable interest (6); the present results reveal the dynamical evolution of excited electrons in real time. Image-potential states are conceptually rather simple. An electron at a distance z in front of a conducting metal surface experiences an attractive force F(z) Ï­ ÏȘe 2 /(2z) 2 identical to that produced by a positive (mirror image) charge at a distance z inside the metal converging toward the vacuum energy, where the influence of the surface potential on the binding energy E B Ï­ ÏȘE n is approximated by a quantum defect 0 Յ a Յ 0.5. Experimentally, image-potential states have been studied with 2PPE on many metal surfaces including surfaces covered with adsorbates and metallic overlayers (5, 7-11). One photon with energy ប a (ប is Planck's constant h divided by 2 and is the photon frequency times 2) excites an electron out of an occupied state below the Fermi energy E F into the image-potential state n. A second photon with energy ប b excites the electron to an energy above E vac The experimental setup consisted of a 80-MHz Ti:sapphire laser system that generated infrared (IR) pulses of 70-fs duration. Frequency-tripled 95-fs ultraviolet (UV) pulses from this laser were used for the excitation step (ប a Ï­ 4.7 eV). The photoelectrons were emitted by the fundamental IR pulses (ប b Ï­ 1.57 eV) and were detected in a hemispherical analyzer with an energy resolution of 30 meV and an angular acceptance of Ïź0.6°about the surface normal. The preparation of the Cu(111) and Cu(100) samples and details of the ultrahigh-vacuum chamber have been described elsewhere (5). The samples were kept at room temperature. Typical energy-resolved 2PPE spectra of C
    • 

    corecore