533 research outputs found

    Cerebral Hypoxia and Ischemia in the Pathogenesis of Dementia after Stroke

    Get PDF
    While it has been reported that ischemic stroke significantly increases the risk of delayed dementia,1,2 the underlying mechanisms are not well understood. Hypoxic and ischemic (HI) injury resulting from cerebral hypoperfusion due to systemic illness has been proposed as a pathogenic mechanism in certain subgroups of patients.1,3 Thus, the aim of this study was to investigate whether cerebral HI injury resulting from certain systemic illnesses (e.g., cardiac arrhythmias, cardiac failure, pneumonia, seizures, sepsis) would be an independent risk factor for the development of incident dementia after ischemic stroke

    Coagulation factor VIII, white matter hyperintensities and cognitive function: Results from the Cardiovascular Health Study

    Get PDF
    Objective: To investigate the relationship between high FVIII clotting activity (FVIII:C), MRI-defined white matter hyperintensities (WMH) and cognitive function over time. Methods: Data from the population-based Cardiovascular Health Study (n = 5,888, aged ≥ 65) were used. FVIII:C was measured in blood samples taken at baseline. WMH burden was assessed on two cranial MRI scans taken roughly 5 years apart. Cognitive function was assessed annually using the Modified Mini-Mental State Examination (3MSE) and Digit Symbol Substitution Test (DSST). We used ordinal logistic regression models adjusted for demographic and cardiovascular factors in cross-sectional and longitudinal WMH analyses, and adjusted linear regression and linear mixed models in the analyses of cognitive function. Results: After adjustment for confounding, higher levels of FVIII:C were not strongly associated with the burden of WMH on the initial MRI scan (OR>p75 = 1.20, 95% CI 0.99-1.45; N = 2,735) nor with WMH burden worsening over time (OR>p75 = 1.18, 95% CI 0.87-1.59; N = 1,527). High FVIII:C showed no strong association with cognitive scores cross-sectionally (3MSE>p75 β = -0.06, 95%CI -0.45 to 0.32, N = 4,005; DSST>p75 β = -0.69, 95%CI -1.52 to 0.13, N = 3,954) or over time (3MSE>p75 β = -0.07,95% CI -0.58 to 0.44, N = 2,764; DSST>p75 β = -0.22, 95% CI -0.97 to 0.53, N = 2,306) after confounding adjustment. Interpretation: The results from this cohort study of older adult participants indicate no strong relationships between higher FVIII:C levels and WMH burden or cognitive function in cross-sectional and longitudinal analyses

    Associations of NINJ2 sequence variants with incident ischemic stroke in the Cohorts for Heart and Aging in Genomic Epidemiology (CHARGE) consortium

    Get PDF
    Background<p></p> Stroke, the leading neurologic cause of death and disability, has a substantial genetic component. We previously conducted a genome-wide association study (GWAS) in four prospective studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and demonstrated that sequence variants near the NINJ2 gene are associated with incident ischemic stroke. Here, we sought to fine-map functional variants in the region and evaluate the contribution of rare variants to ischemic stroke risk.<p></p> Methods and Results<p></p> We sequenced 196 kb around NINJ2 on chromosome 12p13 among 3,986 European ancestry participants, including 475 ischemic stroke cases, from the Atherosclerosis Risk in Communities Study, Cardiovascular Health Study, and Framingham Heart Study. Meta-analyses of single-variant tests for 425 common variants (minor allele frequency [MAF] ≥ 1%) confirmed the original GWAS results and identified an independent intronic variant, rs34166160 (MAF = 0.012), most significantly associated with incident ischemic stroke (HR = 1.80, p = 0.0003). Aggregating 278 putatively-functional variants with MAF≤ 1% using count statistics, we observed a nominally statistically significant association, with the burden of rare NINJ2 variants contributing to decreased ischemic stroke incidence (HR = 0.81; p = 0.026).<p></p> Conclusion<p></p> Common and rare variants in the NINJ2 region were nominally associated with incident ischemic stroke among a subset of CHARGE participants. Allelic heterogeneity at this locus, caused by multiple rare, low frequency, and common variants with disparate effects on risk, may explain the difficulties in replicating the original GWAS results. Additional studies that take into account the complex allelic architecture at this locus are needed to confirm these findings

    Association of coagulation-related and inflammation-related genes and factor VIIc levels with stroke: the Cardiovascular Health Study: Coagulation and inflammation genes and stroke

    Get PDF
    Thrombosis and inflammation are critical in stroke etiology, but associations of coagulation and inflammation gene variants with stroke, and particularly factor VII levels are inconclusive

    Genetic determinants of cortical structure (thickness, surface area and volumes) among disease free adults in the CHARGE Consortium

    Get PDF
    Cortical thickness, surface area and volumes (MRI cortical measures) vary with age and cognitive function, and in neurological and psychiatric diseases. We examined heritability, genetic correlations and genome-wide associations of cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprised 22,824 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the United Kingdom Biobank. Significant associations were replicated in the Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium, and their biological implications explored using bioinformatic annotation and pathway analyses. We identified genetic heterogeneity between cortical measures and brain regions, and 160 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There was enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging

    A comparison of location of acute symptomatic vs. 'silent' small vessel lesions

    Get PDF
    Background: Acute lacunar ischaemic stroke, white matter hyperintensities, and lacunes are all features of cerebral small vessel disease. It is unclear why some small vessel disease lesions present with acute stroke symptoms, whereas others typically do not. Aim: To test if lesion location could be one reason why some small vessel disease lesions present with acute stroke, whereas others accumulate covertly. Methods: We identified prospectively patients who presented with acute lacunar stroke symptoms with a recent small subcortical infarct confirmed on magnetic resonance diffusion imaging. We compared the distribution of the acute infarcts with that of white matter hyperintensity and lacunes using computational image mapping methods. Results: In 188 patients, mean age 67 ± standard deviation 12 years, the lesions that presented with acute lacunar ischaemic stroke were located in or near the main motor and sensory tracts in (descending order): posterior limb of the internal capsule (probability density 0·2/mm3), centrum semiovale (probability density = 0·15/mm3), medial lentiform nucleus/lateral thalamus (probability density = 0·09/mm3), and pons (probability density = 0·02/mm3). Most lacunes were in the lentiform nucleus (probability density = 0·01–0·04/mm3) or external capsule (probability density = 0·05/mm3). Most white matter hyperintensities were in centrum semiovale (except for the area affected by the acute symptomatic infarcts), external capsules, basal ganglia, and brainstem, with little overlap with the acute symptomatic infarcts (analysis of variance, P < 0·01). Conclusions: Lesions that present with acute lacunar ischaemic stroke symptoms may be more likely noticed by the patient through affecting the main motor and sensory tracts, whereas white matter hyperintensity and asymptomatic lacunes mainly affect other areas. Brain location could at least partly explain the symptomatic vs. covert development of small vessel disease

    Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change : UNEP Environmental Effects Assessment Panel, Update 2020

    Get PDF
    This assessment by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) provides the latest scientific update since our most recent comprehensive assessment (Photochemical and Photobiological Sciences, 2019, 18, 595-828). The interactive effects between the stratospheric ozone layer, solar ultraviolet (UV) radiation, and climate change are presented within the framework of the Montreal Protocol and the United Nations Sustainable Development Goals. We address how these global environmental changes affect the atmosphere and air quality; human health; terrestrial and aquatic ecosystems; biogeochemical cycles; and materials used in outdoor construction, solar energy technologies, and fabrics. In many cases, there is a growing influence from changes in seasonality and extreme events due to climate change. Additionally, we assess the transmission and environmental effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the COVID-19 pandemic, in the context of linkages with solar UV radiation and the Montreal Protocol.Peer reviewe

    The Familial Intracranial Aneurysm (FIA) study protocol

    Get PDF
    BACKGROUND: Subarachnoid hemorrhage (SAH) due to ruptured intracranial aneurysms (IAs) occurs in about 20,000 people per year in the U.S. annually and nearly half of the affected persons are dead within the first 30 days. Survivors of ruptured IAs are often left with substantial disability. Thus, primary prevention of aneurysm formation and rupture is of paramount importance. Prior studies indicate that genetic factors are important in the formation and rupture of IAs. The long-term goal of the Familial Intracranial Aneurysm (FIA) Study is to identify genes that underlie the development and rupture of intracranial aneurysms (IA). METHODS/DESIGN: The FIA Study includes 26 clinical centers which have extensive experience in the clinical management and imaging of intracerebral aneurysms. 475 families with affected sib pairs or with multiple affected relatives will be enrolled through retrospective and prospective screening of potential subjects with an IA. After giving informed consent, the proband or their spokesperson invites other family members to participate. Each participant is interviewed using a standardized questionnaire which covers medical history, social history and demographic information. In addition blood is drawn from each participant for DNA isolation and immortalization of lymphocytes. High- risk family members without a previously diagnosed IA undergo magnetic resonance angiography (MRA) to identify asymptomatic unruptured aneurysms. A 10 cM genome screen will be performed to identify FIA susceptibility loci. Due to the significant mortality of affected individuals, novel approaches are employed to reconstruct the genotype of critical deceased individuals. These include the intensive recruitment of the spouse and children of deceased, affected individuals. DISCUSSION: A successful, adequately-powered genetic linkage study of IA is challenging given the very high, early mortality of ruptured IA. Design features in the FIA Study that address this challenge include recruitment at a large number of highly active clinical centers, comprehensive screening and recruitment techniques, non-invasive vascular imaging of high-risk subjects, genome reconstruction of dead affected individuals using marker data from closely related family members, and inclusion of environmental covariates in the statistical analysis
    corecore