60 research outputs found
Fermionic Superfluidity with Imbalanced Spin Populations and the Quantum Phase Transition to the Normal State
Whether it occurs in superconductors, helium-3 or inside a neutron star,
fermionic superfluidity requires pairing of fermions, particles with
half-integer spin. For an equal mixture of two states of fermions ("spin up"
and "spin down"), pairing can be complete and the entire system will become
superfluid. When the two populations of fermions are unequal, not every
particle can find a partner. Will the system nevertheless stay superfluid? Here
we study this intriguing question in an unequal mixture of strongly interacting
ultracold fermionic atoms. The superfluid region vs population imbalance is
mapped out by employing two complementary indicators: The presence or absence
of vortices in a rotating mixture, as well as the fraction of condensed fermion
pairs in the gas. Due to the strong interactions near a Feshbach resonance, the
superfluid state is remarkably stable in response to population imbalance. The
final breakdown of superfluidity marks a new quantum phase transition, the
Pauli limit of superfluidity.Comment: 15 pages, 5 figure
Pairing without Superfluidity: The Ground State of an Imbalanced Fermi Mixture
Radio-frequency spectroscopy is used to study pairing in the normal and
superfluid phases of a strongly interacting Fermi gas with imbalanced spin
populations. At high spin imbalances the system does not become superfluid even
at zero temperature. In this normal phase full pairing of the minority atoms is
observed. This demonstrates that mismatched Fermi surfaces do not prevent
pairing but can quench the superfluid state, thus realizing a system of fermion
pairs that do not condense even at the lowest temperature
Tomographic RF Spectroscopy of a Trapped Fermi Gas at Unitarity
We present spatially resolved radio-frequency spectroscopy of a trapped Fermi
gas with resonant interactions and observe a spectral gap at low temperatures.
The spatial distribution of the spectral response of the trapped gas is
obtained using in situ phase-contrast imaging and 3D image reconstruction. At
the lowest temperature, the homogeneous rf spectrum shows an asymmetric
excitation line shape with a peak at 0.48(4) with respect to the
free atomic line, where is the local Fermi energy
Distillation of Bose-Einstein condensates in a double-well potential
Bose-Einstein condensates of sodium atoms, prepared in an optical dipole
trap, were distilled into a second empty dipole trap adjacent to the first one.
The distillation was driven by thermal atoms spilling over the potential
barrier separating the two wells and then forming a new condensate. This
process serves as a model system for metastability in condensates, provides a
test for quantum kinetic theories of condensate formation, and also represents
a novel technique for creating or replenishing condensates in new locations
Observation of Phase Separation in a Strongly-Interacting Imbalanced Fermi Gas
We have observed phase separation between the superfluid and the normal
component in a strongly interacting Fermi gas with imbalanced spin populations.
The in situ distribution of the density difference between two trapped spin
components is obtained using phase-contrast imaging and 3D image
reconstruction. A shell structure is clearly identified where the superfluid
region of equal densities is surrounded by a normal gas of unequal densities.
The phase transition induces a dramatic change in the density profiles as
excess fermions are expelled from the superfluid.Comment: 5 pages, 7 figure
Quantum reflection of atoms from a solid surface at normal incidence
We observed quantum reflection of ultracold atoms from the attractive
potential of a solid surface. Extremely dilute Bose-Einstein condensates of
^{23}Na, with peak density 10^{11}-10^{12}atoms/cm^3, confined in a weak
gravito-magnetic trap were normally incident on a silicon surface. Reflection
probabilities of up to 20 % were observed for incident velocities of 1-8 mm/s.
The velocity dependence agrees qualitatively with the prediction for quantum
reflection from the attractive Casimir-Polder potential. Atoms confined in a
harmonic trap divided in half by a solid surface exhibited extended lifetime
due to quantum reflection from the surface, implying a reflection probability
above 50 %.Comment: To appear in Phys. Rev. Lett. (December 2004)5 pages, 4 figure
Superfluid Expansion of a Strongly Interacting Fermi Gas
We study the expansion of a rotating, superfluid Fermi gas. The presence and
absence of vortices in the rotating gas is used to distinguish superfluid and
normal parts of the expanding cloud. We find that the superfluid pairs survive
during the expansion until the density decreases below a critical value. Our
observation of superfluid flow at this point extends the range where fermionic
superfluidity has been studied to densities of 1.2 10^{11} cm^{-3}, about an
order of magnitude lower than any previous study.Comment: 5 pages, 5 figure
The axial anomaly and the phases of dense QCD
The QCD axial anomaly, by coupling the chiral condensate and BCS pairing
fields of quarks in dense matter, leads to a new critical point in the QCD
phase diagram \cite{HTYB,chiral2}, which at sufficiently low temperature should
terminate the line of phase transitions between chirally broken hadronic matter
and color superconducting quark matter. The critical point indicates that
matter at low temperature should cross over smoothly from the hadronic to the
quark phase, as suggested earlier on the basis of symmetry. We review here the
arguments, based on a general Ginzburg-Landau effective Lagrangian, for the
existence of the new critical point, as well as discuss possible connections
between the QCD phase structure and the BEC-BCS crossover in ultracold trapped
atomic fermion systems at unitarity. and implications for the presence of quark
matter in neutron stars.Comment: 8 pages, Proceedings of Quark Matter 2008, Jaipu
Quantitative Stability of Linear Infinite Inequality Systems under Block Perturbations with Applications to Convex Systems
The original motivation for this paper was to provide an efficient
quantitative analysis of convex infinite (or semi-infinite) inequality systems
whose decision variables run over general infinite-dimensional (resp.
finite-dimensional) Banach spaces and that are indexed by an arbitrary fixed
set . Parameter perturbations on the right-hand side of the inequalities are
required to be merely bounded, and thus the natural parameter space is
. Our basic strategy consists of linearizing the parameterized
convex system via splitting convex inequalities into linear ones by using the
Fenchel-Legendre conjugate. This approach yields that arbitrary bounded
right-hand side perturbations of the convex system turn on constant-by-blocks
perturbations in the linearized system. Based on advanced variational analysis,
we derive a precise formula for computing the exact Lipschitzian bound of the
feasible solution map of block-perturbed linear systems, which involves only
the system's data, and then show that this exact bound agrees with the
coderivative norm of the aforementioned mapping. In this way we extend to the
convex setting the results of [3] developed for arbitrary perturbations with no
block structure in the linear framework under the boundedness assumption on the
system's coefficients. The latter boundedness assumption is removed in this
paper when the decision space is reflexive. The last section provides the aimed
application to the convex case
Direct Observation of the Superfluid Phase Transition in Ultracold Fermi Gases
Water freezes into ice, atomic spins spontaneously align in a magnet, liquid
helium becomes superfluid: Phase transitions are dramatic phenomena. However,
despite the drastic change in the system's behaviour, observing the transition
can sometimes be subtle. The hallmark of Bose-Einstein condensation (BEC) and
superfluidity in trapped, weakly interacting Bose gases is the sudden
appearance of a dense central core inside a thermal cloud. In strongly
interacting gases, such as the recently observed fermionic superfluids, this
clear separation between the superfluid and the normal parts of the cloud is no
longer given. Condensates of fermion pairs could be detected only using
magnetic field sweeps into the weakly interacting regime. The quantitative
description of these sweeps presents a major theoretical challenge. Here we
demonstrate that the superfluid phase transition can be directly observed by
sudden changes in the shape of the clouds, in complete analogy to the case of
weakly interacting Bose gases. By preparing unequal mixtures of the two spin
components involved in the pairing, we greatly enhance the contrast between the
superfluid core and the normal component. Furthermore, the non-interacting
wings of excess atoms serve as a direct and reliable thermometer. Even in the
normal state, strong interactions significantly deform the density profile of
the majority spin component. We show that it is these interactions which drive
the normal-to-superfluid transition at the critical population imbalance of
70(5)%.Comment: 16 pages (incl. Supplemental Material), 5 figure
- …