11 research outputs found

    OPTIMIZATION OF SOLID-LIQUID EXTRACTION OF ETHANOL OBTAINED BY SOLID-STATE FERMENTATION OF SURGARCANE BAGASSE

    Get PDF
    ABSTRACT -Solid-state fermentation has arrived as an alternative to reduce the amount of waste water in ethanol fermentation. However, the recovery of ethanol from solid medium should be investigated, since depending of experimental condition used in the extraction, significant difference in the results can be obtained. In this work was investigated the influence of temperature (30-50°C), solid to liquid ratio (0.1-0.4 wt%) and orbital agitation (50-180 rpm) in the recovery of ethanol from sugarcane bagasse at different fermentation conditions of moisture content (50-80%) and ethanol amount (5-20 wt%). The highest recovering efficiency was 99,8% at 30°C, initial ethanol amount of 10 wt%, orbital agitation of 100 rpm and moisture content of 60%. The main contribution of this work was to demonstrate that the amount of water used in the extraction is lesser than that used in traditional liquid fermentation, making possible to obtain a more concentrated broth, saving with water treatment and energy

    Effect of production parameters and stress conditions on beta-carotene-loaded lipid particles produced with palm stearin and whey protein isolate

    Get PDF
    Abstract Microencapsulation is currently used by the food industry for different purposes, including the protection of ingredients against factors such as oxidation and volatilization, as well as to increase the bioavailability and bioaccessibility of nutrients. The current study aimed to encapsulate beta-carotene in solid lipid microparticles stabilized with whey protein isolate (WPI), and also investigate their integrity during storage and under stress conditions such as different ionic strengths, sucrose concentrations and thermal treatments. Solid lipid microparticles were produced using palm stearin, a food grade vegetable fat, using a single-step high shear process. Of the different formulations used for lipid microparticle production, characterization studies showed that the greatest stability was obtained with systems produced using 1.25% (w/v) whey protein isolate, 5% (w/v) palm stearin and 0.2% (w/v) xanthan gum. This formulation was applied for the production of beta-carotene-loaded solid lipid microparticles, with different concentrations of alpha-tocopherol, in order to verify its possible antioxidant activity. The results showed that the addition of alpha-tocopherol to the dispersions provided an increase in encapsulation efficiency after 40 days of storage that ranged from 29.4% to 30.8% when compared to the system without it. Furthermore, the solid lipid microparticles remained stable even when submitted to high ionic strength and to heating in the proposed temperature range (40 °C to 80 °C), highlighting their feasible application under typical food processing conditions
    corecore