32 research outputs found
Non anti-coagulant factors associated with filter life in continuous renal replacement therapy (CRRT): a systematic review and meta-analysis
BACKGROUND: Optimising filter life and performance efficiency in continuous renal replacement therapy has been a focus of considerable recent research. Larger high quality studies have predominantly focussed on optimal anticoagulation however CRRT is complex and filter life is also affected by vascular access, circuit and management factors. We performed a systematic search of the literature to identify and quantify the effect of vascular access, circuit and patient factors that affect filter life and presented the results as a meta-analysis. METHODS: A systematic review and meta-analysis was performed by searching Pubmed (MEDLINE) and Ovid EMBASE libraries from inception to 29(th) February 2016 for all studies with a comparator or independent variable relating to CRRT circuits and reporting filter life. Included studies documented filter life in hours with a comparator other than anti-coagulation intervention. All studies comparing anticoagulation interventions were searched for regression or hazard models pertaining to other sources of variation in filter life. RESULTS: Eight hundred nineteen abstracts were identified of which 364 were selected for full text analysis. 24 presented data on patient modifiers of circuit life, 14 on vascular access modifiers and 34 on circuit related factors. Risk of bias was high and findings are hypothesis generating. Ranking of vascular access site by filter longevity favours: tunnelled semi-permanent catheters, femoral, internal jugular and subclavian last. There is inconsistency in the difference reported between femoral and jugular catheters. Amongst published literature, modality of CRRT consistently favoured continuous veno-venous haemodiafiltration (CVVHD-F) with an associated 44% lower failure rate compared to CVVH. There was a trend favouring higher blood flow rates. There is insufficient data to determine advantages of haemofilter membranes. Patient factors associated with a statistically significant worsening of filter life included mechanical ventilation, elevated SOFA or LOD score, elevations in ionized calcium, elevated platelet count, red cell transfusion, platelet factor 4 (PF-4) antibodies, and elevated fibrinogen. Majority of studies are observational or report circuit factors in sub-analysis. Risk of bias is high and findings require targeted investigations to confirm. CONCLUSION: The interaction of patient, pathology, anticoagulation, vascular access, circuit and staff factors contribute to CRRT filter life. There remains an ambiguity from published data as to which site and side should be the first choice for vascular access placement and what interaction this has with patient factors and timing. Early consideration of tunnelled semi-permanent access may provide optimal filter life if longer periods of CRRT are anticipated. There remains an absence of robust evidence outside of anti-coagulation strategies despite over 20Â years of therapy delivery however trends favour CVVHD-F over CVVH
An update on the use of animal models in diabetic nephropathy research
In the current review, we discuss limitations and recent advances in animal models of diabetic nephropathy (DN). As in human disease, genetic factors may determine disease severity with the murine FVB and DBA/2J strains being more susceptible to DN than C57BL/6J mice. On the black and tan, brachyuric (BTBR) background, leptin deficient (ob/ob) mice develop many of the pathological features of human DN. Hypertension synergises with hyperglycemia to promote nephropathy in rodents. Moderately hypertensive endothelial nitric oxide synthase (eNOS(−/−)) deficient diabetic mice develop hyaline arteriosclerosis and nodular glomerulosclerosis and induction of renin-dependent hypertension in diabetic Cyp1a1mRen2 rats mimics moderately severe human DN. In addition, diabetic eNOS(−/−) mice and Cyp1a1mRen2 rats recapitulate many of the molecular pathways activated in the human diabetic kidney. However, no model exhibits all the features of human DN; therefore, researchers should consider biochemical, pathological, and transcriptomic data in selecting the most appropriate model to study their molecules and pathways of interest
BTBR Ob/Ob Mutant Mice Model Progressive Diabetic Nephropathy
There remains a need for robust mouse models of diabetic nephropathy (DN) that mimic key features of advanced human DN. The recently developed mouse strain BTBR with the ob/ob leptin-deficiency mutation develops severe type 2 diabetes, hypercholesterolemia, elevated triglycerides, and insulin resistance, but the renal phenotype has not been characterized. Here, we show that these obese, diabetic mice rapidly develop morphologic renal lesions characteristic of both early and advanced human DN. BTBR ob/ob mice developed progressive proteinuria beginning at 4 weeks. Glomerular hypertrophy and accumulation of mesangial matrix, characteristic of early DN, were present by 8 weeks, and glomerular lesions similar to those of advanced human DN were present by 20 weeks. By 22 weeks, we observed an approximately 20% increase in basement membrane thickness and a >50% increase in mesangial matrix. Diffuse mesangial sclerosis (focally approaching nodular glomerulosclerosis), focal arteriolar hyalinosis, mesangiolysis, and focal mild interstitial fibrosis were present. Loss of podocytes was present early and persisted. In summary, BTBR ob/ob mice develop a constellation of abnormalities that closely resemble advanced human DN more rapidly than most other murine models, making this strain particularly attractive for testing therapeutic interventions