4,648 research outputs found

    Crossover behavior and multi-step relaxation in a schematic model of the cut-off glass transition

    Get PDF
    We study a schematic mode-coupling model in which the ideal glass transition is cut off by a decay of the quadratic coupling constant in the memory function. (Such a decay, on a time scale tau_I, has been suggested as the likely consequence of activated processes.) If this decay is complete, so that only a linear coupling remains at late times, then the alpha relaxation shows a temporal crossover from a relaxation typical of the unmodified schematic model to a final strongly slower-than-exponential relaxation. This crossover, which differs somewhat in form from previous schematic models of the cut-off glass transition, resembles light-scattering experiments on colloidal systems, and can exhibit a `slower-than-alpha' relaxation feature hinted at there. We also consider what happens when a similar but incomplete decay occurs, so that a significant level of quadratic coupling remains for t>>tau_I. In this case the correlator acquires a third, weaker relaxation mode at intermediate times. This empirically resembles the beta process seen in many molecular glass formers. It disappears when the initial as well as the final quadratic coupling lies on the liquid side of the glass transition, but remains present even when the final coupling is only just inside the liquid (so that the alpha relaxation time is finite, but too long to measure). Our results are suggestive of how, in a cut-off glass, the underlying `ideal' glass transition predicted by mode-coupling theory can remain detectable through qualitative features in dynamics.Comment: 14 pages revtex inc 10 figs; submitted to pr

    Sediment trap experiments in the deep North Atlantic: Isotopic and elemental fluxes

    Get PDF
    We have carried out sediment trap experiments at sites in the Sargasso Sea (S2) and in the Atlantic off Barbados (E) to determine the mass flux and chemical composition of material sinking to the sea floor…

    Pattern selection as a nonlinear eigenvalue problem

    Full text link
    A unique pattern selection in the absolutely unstable regime of driven, nonlinear, open-flow systems is reviewed. It has recently been found in numerical simulations of propagating vortex structures occuring in Taylor-Couette and Rayleigh-Benard systems subject to an externally imposed through-flow. Unlike the stationary patterns in systems without through-flow the spatiotemporal structures of propagating vortices are independent of parameter history, initial conditions, and system length. They do, however, depend on the boundary conditions in addition to the driving rate and the through-flow rate. Our analysis of the Ginzburg-Landau amplitude equation elucidates how the pattern selection can be described by a nonlinear eigenvalue problem with the frequency being the eigenvalue. Approaching the border between absolute and convective instability the eigenvalue problem becomes effectively linear and the selection mechanism approaches that of linear front propagation. PACS: 47.54.+r,47.20.Ky,47.32.-y,47.20.FtComment: 18 pages in Postsript format including 5 figures, to appear in: Lecture Notes in Physics, "Nonlinear Physics of Complex Sytems -- Current Status and Future Trends", Eds. J. Parisi, S. C. Mueller, and W. Zimmermann (Springer, Berlin, 1996

    Universal Algebraic Relaxation of Velocity and Phase in Pulled Fronts generating Periodic or Chaotic States

    Get PDF
    We investigate the asymptotic relaxation of so-called pulled fronts propagating into an unstable state. The ``leading edge representation'' of the equation of motion reveals the universal nature of their propagation mechanism and allows us to generalize the universal algebraic velocity relaxation of uniformly translating fronts to fronts, that generate periodic or even chaotic states. Such fronts in addition exhibit a universal algebraic phase relaxation. We numerically verify our analytical predictions for the Swift-Hohenberg and the Complex Ginzburg Landau equation.Comment: 4 pages Revtex, 2 figures, submitted to Phys. Rev. Let

    Renormalization Group Theory for a Perturbed KdV Equation

    Full text link
    We show that renormalization group(RG) theory can be used to give an analytic description of the evolution of a perturbed KdV equation. The equations describing the deformation of its shape as the effect of perturbation are RG equations. The RG approach may be simpler than inverse scattering theory(IST) and another approaches, because it dose not rely on any knowledge of IST and it is very concise and easy to understand. To the best of our knowledge, this is the first time that RG has been used in this way for the perturbed soliton dynamics.Comment: 4 pages, no figure, revte

    Magnetic Ordering in V-Layers of the Superconducting System of Sr2VFeAsO3

    Full text link
    Results of transport, magnetic, thermal, and 75As-NMR measurements are presented for superconducting Sr2VFeAsO3 with an alternating stack of FeAs and perovskite-like block layers. Although apparent anomalies in magnetic and thermal properties have been observed at ~150 K, no anomaly in transport behaviors has been observed at around the same temperature. These results indicate that V ions in the Sr2VO3-block layers have localized magnetic moments and that V-electrons do not contribute to the Fermi surface. The electronic characteristics of Sr2VFeAsO3 are considered to be common to those of other superconducting systems with Fe-pnictogen layers.Comment: 4 pages, 4 figures, To appear in JPSJ 79 (2010) 12371
    • …
    corecore