7,285 research outputs found
The late merging phase of a galaxy cluster : XMM EPIC Observations of A3266
We present a mosaic of five XMM-Newton observations of the nearby
() merging galaxy cluster Abell 3266. We use the spectro-imaging
capabilities of \xmm to build precise (projected) temperature, entropy,
pressure and Fe abundance maps. The temperature map exhibits a curved,
large-scale hot region, associated with elevated entropy levels, very similar
to that foreseen in numerical simulations. The pressure distribution is
disturbed in the central region but is remarkably regular on large scales. The
Fe abundance map indicates that metals are inhomogeneously distributed across
the cluster. Using simple physical calculations and comparison with numerical
simulations, we discuss in detail merging scenarios that can reconcile the
observed gas density, temperature and entropy structure, and the galaxy density
distribution
Fast Poisson Noise Removal by Biorthogonal Haar Domain Hypothesis Testing
Methods based on hypothesis tests (HTs) in the Haar domain are widely used to
denoise Poisson count data. Facing large datasets or real-time applications,
Haar-based denoisers have to use the decimated transform to meet limited-memory
or computation-time constraints. Unfortunately, for regular underlying
intensities, decimation yields discontinuous estimates and strong "staircase"
artifacts. In this paper, we propose to combine the HT framework with the
decimated biorthogonal Haar (Bi-Haar) transform instead of the classical Haar.
The Bi-Haar filter bank is normalized such that the p-values of Bi-Haar
coefficients (pBH) provide good approximation to those of Haar (pH) for
high-intensity settings or large scales; for low-intensity settings and small
scales, we show that pBH are essentially upper-bounded by pH. Thus, we may
apply the Haar-based HTs to Bi-Haar coefficients to control a prefixed false
positive rate. By doing so, we benefit from the regular Bi-Haar filter bank to
gain a smooth estimate while always maintaining a low computational complexity.
A Fisher-approximation-based threshold imple- menting the HTs is also
established. The efficiency of this method is illustrated on an example of
hyperspectral-source-flux estimation
Experimental Investigation of Nozzle/Plume Aerodynamics at Hypersonic Speeds
The work performed by D. W. Bogdanoff and J.-L. Cambier during the period of 1 Feb. - 31 Oct. 1992 is presented. The following topics are discussed: (1) improvement in the operation of the facility; (2) the wedge model; (3) calibration of the new test section; (4) combustor model; (5) hydrogen fuel system for combustor model; (6) three inch calibration/development tunnel; (7) shock tunnel unsteady flow; (8) pulse detonation wave engine; (9) DCAF flow simulation; (10) high temperature shock layer simulation; and (11) the one dimensional Godunov CFD code
Clues to the Origin of the Mass-Metallicity Relation: Dependence on Star Formation Rate and Galaxy Size
We use a sample of 43,690 galaxies selected from the Sloan Digital Sky Survey
Data Release 4 to study the systematic effects of specific star formation rate
(SSFR) and galaxy size (as measured by the half light radius, r_h) on the
mass-metallicity relation. We find that galaxies with high SSFR or large r_h
for their stellar mass have systematically lower gas phase-metallicities (by up
to 0.2 dex) than galaxies with low SSFR or small r_h. We discuss possible
origins for these dependencies, including galactic winds/outflows, abundance
gradients, environment and star formation rate efficiencies.Comment: Accepted by ApJ Letter
A Super-Integrable Discretization of the Calogero Model
A time-discretization that preserves the super-integrability of the Calogero
model is obtained by application of the integrable time-discretization of the
harmonic oscillator to the projection method for the Calogero model with
continuous time. In particular, the difference equations of motion, which
provide an explicit scheme for time-integration, are explicitly presented for
the two-body case. Numerical results exhibit that the scheme conserves all
the conserved quantities of the (two-body) Calogero model with a
precision of the machine epsilon times the number of iterations.Comment: 22 pages, 5 figures. Added references. Corrected typo
Tail-induced spin-orbit effect in the gravitational radiation of compact binaries
Gravitational waves contain tail effects which are due to the back-scattering
of linear waves in the curved space-time geometry around the source. In this
paper we improve the knowledge and accuracy of the two-body inspiraling
post-Newtonian (PN) dynamics and gravitational-wave signal by computing the
spin-orbit terms induced by tail effects. Notably, we derive those terms at 3PN
order in the gravitational-wave energy flux, and 2.5PN and 3PN orders in the
wave polarizations. This is then used to derive the spin-orbit tail effects in
the phasing through 3PN order. Our results can be employed to carry out more
accurate comparisons with numerical-relativity simulations and to improve the
accuracy of analytical templates aimed at describing the whole process of
inspiral, merger and ringdown.Comment: Minor corrections. To be published in Physical Review
Planetary Bistatic Radar
Planetary radar observations offer the potential for probing the properties
of characteristics of solid bodies throughout the inner solar system and at
least as far as the orbit of Saturn. In addition to the direct scientific
value, precise orbital determinations can be obtained from planetary radar
observations, which are in turn valuable for mission planning or spacecraft
navigation and planetary defense. The next-generation Very Large Array would
not have to be equipped with a transmitter to be an important asset in the
world's planetary radar infrastructure. Bistatic radar, in which one antenna
transmits (e.g., Arecibo or Goldstone) and another receives, are used commonly
today, with the Green Bank Telescope (GBT) serving as a receiver. The improved
sensitivity of the ngVLA relative to the GBT would improve the signal-to-noise
ratios on many targets and increase the accessible volume specifically for
asteroids. Goldstone-ngVLA bistatic observations would have the potential of
rivaling the sensitivity of Arecibo, but with much wider sky access.Comment: 11 pages, 2 figures, To be published in the ASP Monograph Series,
"Science with a Next-Generation VLA", ed. E. J. Murphy (ASP, San Francisco,
CA
Molecular Realization of a Quantum NAND Tree
The negative-AND (NAND) gate is universal for classical computation making it
an important target for development. A seminal quantum computing algorithm by
Farhi, Goldstone and Gutmann has demonstrated its realization by means of
quantum scattering yielding a quantum algorithm that evaluates the output
faster than any classical algorithm. Here, we derive the NAND outputs
analytically from scattering theory using a tight-binding (TB) model and show
the restrictions on the TB parameters in order to still maintain the NAND gate
function. We map the quantum NAND tree onto a conjugated molecular system, and
compare the NAND output with non-equilibrium Green's function (NEGF) transport
calculations using density functional theory (DFT) and TB Hamiltonians for the
electronic structure. Further, we extend our molecular platform to show other
classical gates that can be realized for quantum computing by scattering on
graphs.Comment: 17 pages, 6 figures, 1 tabl
- …