328 research outputs found

    The quarter-point quadratic isoparametric element as a singular element for crack problems

    Get PDF
    The quadratic isoparametric elements which embody the inverse square root singularity are used for calculating the stress intensity factors at tips of cracks. The strain singularity at a point or an edge is obtained in a simple manner by placing the mid-side nodes at quarter points in the vicinity of the crack tip or an edge. These elements are implemented in NASTRAN as dummy elements. The method eliminates the use of special crack tip elements and in addition, these elements satisfy the constant strain and rigid body modes required for convergence

    The Journalist and His Confidential Source: Should a Testimonial Privilege Be Allowed

    Get PDF
    Introduction The Basis for a Privilege The Current Law When Is the Public Benefited? When Should This Privilege Be Denied? When Is There No Public Benefit? When Does Detriment Outweigh Benefit? Conclusio

    Municipal Corporations—Aesthetic Zoning under the Police Power

    Get PDF
    Plaintiff was denied a building permit solely on the ground that the village building board, composed of two architects and one other person, had failed to make a finding, as required by ordinance, that the “exterior architectural appeal and functional plan” of the proposed building would not be so at variance with other structures in the neighborhood as to substantially reduce property values. The trial court held the provision of the ordinance requiring the determination to be invalid and issued a peremptory writ of mandamus directing the building inspector to issue the permit, notwithstanding the decision of the board. Held: reversed. The ordinance was a valid exercise of the police power and was not so indefinite as to subject the applicant to the arbitrary discretion or caprice of the building board. This decision may well mark a new trend of open acceptance of aesthetic considerations as a valid basis for exercise of the police power. The restriction here is not upon the use of the property but upon its appearance. The decision thus marks a departure from the generally accepted rule that aesthetic considerations are not, of themselves, a valid basis for the exercise of the police power. Courts have recognized that the protection of property values is an end at which restrictions on the use of property are aimed. However, under the established view that aesthetic controls are based on individual taste and are thus indefinite, that end of itself had not been held adequate to justify restrictions on the appearance of property

    The Journalist and His Confidential Source: Should a Testimonial Privilege Be Allowed

    Get PDF
    Introduction The Basis for a Privilege The Current Law When Is the Public Benefited? When Should This Privilege Be Denied? When Is There No Public Benefit? When Does Detriment Outweigh Benefit? Conclusio

    Virtual Electrode Design for Lithium-Ion Battery Cathodes

    Get PDF
    Microstructural characteristics of lithium‐ion battery cathodes determine their performance. Thus, modern simulation tools are increasingly important for the custom design of multiphase cathodes. This work presents a new method for generating virtual, yet realistic cathode microstructures. A precondition is a 3D template of a commercial cathode, reconstructed via focused ion beam/scanning electron microscopy (FIB/SEM) tomography and appropriate algorithms. The characteristically shaped micrometer‐sized active material (AM) particles and agglomerates of nano‐sized carbon‐binder (CB) particles are individually extracted from the voxel‐based templates. Thereby, a library of roughly 1100 AM particles and 20 CB agglomerates is created. Next, a virtual cathode microstructure is predefined, and representative sets of AM particles and CB agglomerates are built. The following re‐assembly of AM particles within a predefined volume box works using dropping and rolling algorithms. Thereby, one can generate cathodes with specified characteristics, such as the volume fraction of AM, CB and pore space, particle‐size distributions, and gradients thereof. Naturally, such a virtual twin is a promising starting point for physics‐based electrochemical performance models. The workflow from the commercial cathode microstructure through to a full virtual twin will be explained and assessed for a blend cathode made of the two AMs, LiNiCoAlO2_{2} (NCA) and LiCoO2_{2} (LCO)

    Modification of the mean-square error principle to double the convergence speed of a special case of Hopfield neural network used to segment pathological liver color images

    Get PDF
    BACKGROUND: This paper analyzes the effect of the mean-square error principle on the optimization process using a Special Case of Hopfield Neural Network (SCHNN). METHODS: The segmentation of multidimensional medical and colour images can be formulated as an energy function composed of two terms: the sum of squared errors, and a noise term used to avoid the network to be stacked in early local minimum points of the energy landscape. RESULTS: Here, we show that the sum of weighted error, higher than simple squared error, leads the SCHNN classifier to reach faster a local minimum closer to the global minimum with the assurance of acceptable segmentation results. CONCLUSIONS: The proposed segmentation method is used to segment 20 pathological liver colour images, and is shown to be efficient and very effective to be implemented for use in clinics

    Volumetric performance capture from minimal camera viewpoints

    Get PDF
    We present a convolutional autoencoder that enables high fidelity volumetric reconstructions of human performance to be captured from multi-view video comprising only a small set of camera views. Our method yields similar end-to-end reconstruction error to that of a probabilistic visual hull computed using significantly more (double or more) viewpoints. We use a deep prior implicitly learned by the autoencoder trained over a dataset of view-ablated multi-view video footage of a wide range of subjects and actions. This opens up the possibility of high-end volumetric performance capture in on-set and prosumer scenarios where time or cost prohibit a high witness camera count

    On visualizing continuous turbulence scales

    Get PDF
    Turbulent flows are multi‐scale with vortices spanning a wide range of scales continuously. Due to such complexities, turbulence scales are particularly difficult to analyse and visualize. In this work, we present a novel and efficient optimization‐based method for continuous‐scale turbulence structure visualization with scale decomposition directly in the Kolmogorov energy spectrum. To achieve this, we first derive a new analytical objective function based on integration approximation. Using this new formulation, we can significantly improve the efficiency of the underlying optimization process and obtain the desired filter in the Kolmogorov energy spectrum for scale decomposition. More importantly, such a decomposition allows a ‘continuous‐scale visualization’ that enables us to efficiently explore the decomposed turbulence scales and further analyse the turbulence structures in a continuous manner. With our approach, we can present scale visualizations of direct numerical simulation data sets continuously over the scale domain for both isotropic and boundary layer turbulent flows. Compared with previous works on multi‐scale turbulence analysis and visualization, our method is highly flexible and efficient in generating scale decomposition and visualization results. The application of the proposed technique to both isotropic and boundary layer turbulence data sets verifies the capability of our technique to produce desirable scale visualization results
    • 

    corecore