357 research outputs found
Spatial and temporal variation of CO<sub>2</sub> efflux along a disturbance gradient in a miombo woodland in Western Zambia
Carbon dioxide efflux from the soil surface was measured over a period of several weeks within a heterogeneous Brachystegia spp. dominated miombo woodland in Western Zambia. The objectives were to examine spatial and temporal variation of soil respiration along a disturbance gradient from a protected forest reserve to a cut, burned, and grazed area outside, and to relate the flux to various abiotic and biotic drivers. The highest daily mean fluxes (around 12 mu mol CO2 m(-2) s(-1)) were measured in the protected forest in the wet season and lowest daily mean fluxes (around 1 mu mol CO2 m(-2) s(-1)) in the most disturbed area during the dry season. Diurnal variation of soil respiration was closely correlated with soil temperature. The combination of soil water content and soil temperature was found to be the main driving factor at seasonal time scale. There was a 75% decrease in soil CO2 efflux during the dry season and a 20% difference in peak soil respiratory flux measured in 2008 and 2009. Spatial variation of CO2 efflux was positively related to total soil carbon content in the undisturbed area but not at the disturbed site. Coefficients of variation of efflux rates between plots decreased towards the core zone of the protected forest reserve. Normalized soil respiration values did not vary significantly along the disturbance gradient. Spatial variation of respiration did not show a clear distinction between the disturbed and undisturbed sites and could not be explained by variables such as leaf area index. In contrast, within plot variability of soil respiration was explained by soil organic carbon content. Three different approaches to calculate total ecosystem respiration (R-eco) from eddy covariance measurements were compared to two bottom-up estimates of R-eco obtained from chambers measurements of soil-and leaf respiration which differed in the consideration of spatial heterogeneity. The consideration of spatial variability resulted only in small changes of R-eco when compared to simple averaging. Total ecosystem respiration at the plot scale, obtained by eddy covariance differed by up to 25% in relation to values calculated from the soil-and leaf chamber efflux measurements but without showing a clear trend
Response of carbon fluxes to water relations in a savanna ecosystem in South Africa
International audienceThe principal mechanisms that connect carbon fluxes with water relations in savanna ecosystems were studied by using eddy covariance in a savanna ecosystem at Kruger National Park, South Africa. Since the annual drought and rewetting cycle is a major factor influencing the function of savanna ecosystems, this work focused on the close inter-connection between water relations and carbon fluxes. Data from a nine-month measuring campaign lasting from the early wet season to the late dry season were used. Total ecosystem respiration showed highest values at the onset of the growing season, a slightly lower plateau during the main part of the growing season and a continuous decrease during the transition towards the dry season. The regulation of canopy conductance was changed in two ways: changes due to phenology during the course of the growing season and short-term acclimation to soil water conditions. The most constant parameter was water use efficiency that was influenced by VPD during the day but the VPD response curve of water usage did change only slightly during the course of the growing season and decreased by about 30% during the transition from wet to dry season. The regulation of canopy conductance and photosynthetic capacity were closely related. This observation meets recent leaf-level findings that stomatal closure triggers down-regulation of Rubisco during drought. Our results may show the effects of these processes on the ecosystem scale
Towards operational remote sensing of forest carbon balance across Northern Europe
Monthly averages of ecosystem respiration (ER), gross primary production (GPP) and net ecosystem exchange (NEE) over Scandinavian forest sites were estimated using regression models driven by air temperature (AT), absorbed photosynthetically active radiation (APAR) and vegetation indices. The models were constructed and evaluated using satellite data from Terra/MODIS and measured data collected at seven flux tower sites in northern Europe. Data used for model construction was excluded from the evaluation. Relationships between ground measured variables and the independent variables were investigated. <br><br> It was found that the enhanced vegetation index (EVI) at 250 m resolution was highly noisy for the coniferous sites, and hence, 1 km EVI was used for the analysis. Linear relationships between EVI and the biophysical variables were found: correlation coefficients between EVI and GPP, NEE, and AT ranged from 0.90 to 0.79 for the deciduous data, and from 0.85 to 0.67 for the coniferous data. Due to saturation, there were no linear relationships between normalized difference vegetation index (NDVI) and the ground measured parameters found at any site. APAR correlated better with the parameters in question than the vegetation indices. Modeled GPP and ER were in good agreement with measured values, with more than 90% of the variation in measured GPP and ER being explained by the coniferous models. The site-specific respiration rate at 10&deg;C (<i>R</i><sub>10</sub>) was needed for describing the ER variation between sites. Even though monthly NEE was modeled with less accuracy than GPP, 61% and 75% (dec. and con., respectively) of the variation in the measured time series was explained by the model. These results are important for moving towards operational remote sensing of forest carbon balance across Northern Europe
PATHFINDER ATOMIC POWER PLANT STEAM SEPARATOR DEVELOPMENT
Development of a steam separator the Pathfinder Reactor is reported. A full-scale separator model was developed through the combination of scale-model testing and the application of principles associated with the existing theory of centrifugal separation. This model was put through full-scale air-water tests which led to modifications and a final design which meets Pathfinder requirements. Design data are included for the reactor and the steam separator. (J.R.D.
The association of N-terminal pro-brain-type natriuretic peptide with hemodynamics and functional capacity in therapy-naive precapillary pulmonary hypertension: results from a cohort study
Background: N-terminal pro-brain-type natriuretic peptide (NT-proBNP) is currently used as a surrogate marker for disease severity in pulmonary hypertension (PH). However, NT-proBNP tends to have a high variability and may insufficiently correlate with hemodynamics and exercise capacity. Methods: To investigate the association of NT-proBNP with hemodynamics and cardio-pulmonary exercise testing (CPET) in 84 therapy-naive patients with precapillary PH. Results: NT-proBNP levels were significantly correlated with hemodynamics and CPET parameters except for cardiac index, diffusion capacity, PaO2 at peak exercise, and peak minute ventilation. NT-proBNP correlated best with hemodynamics and CPET in women and patients >65 years. NT-proBNP correlated better with CPET in pulmonary arterial hypertension compared to chronic thromboembolic PH (CTEPH). Conclusion: NT-proBNP is associated with disease severity in precapillary PH. The association might be age-and gender-dependent. NT-proBNP may insufficiently correlate with disease severity in CTEPH, possibly due to comorbidity
The charcoal trap: Miombo forests and the energy needs of people
<p>Abstract</p> <p>Background</p> <p>This study evaluates the carbon dioxide and other greenhouse gas fluxes to the atmosphere resulting from charcoal production in Zambia. It combines new biomass and flux data from a study, that was conducted in a <it>miombo </it>woodland within the Kataba Forest Reserve in the Western Province of Zambia, with data from other studies.</p> <p>Results</p> <p>The measurements at Kataba compared protected area (3 plots) with a highly disturbed plot outside the forest reserve and showed considerably reduced biomass after logging for charcoal production. The average aboveground biomass content of the reserve (Plots 2-4) was around 150 t ha<sup>-1</sup>, while the disturbed plot only contained 24 t ha<sup>-1</sup>. Soil carbon was not reduced significantly in the disturbed plot. Two years of eddy covariance measurements resulted in net ecosystem exchange values of -17 ± 31 g C m<sup>-2 </sup>y<sup>-1</sup>, in the first and 90 ± 16 g C m<sup>-2 </sup>in the second year. Thus, on the basis of these two years of measurement, there is no evidence that the <it>miombo </it>woodland at Kataba represents a present-day carbon sink. At the country level, it is likely that deforestation for charcoal production currently leads to a per capita emission rate of 2 - 3 t CO<sub>2 </sub>y<sup>-1</sup>. This is due to poor forest regeneration, although the resilience of <it>miombo </it>woodlands is high. Better post-harvest management could change this situation.</p> <p>Conclusions</p> <p>We argue that protection of <it>miombo </it>woodlands has to account for the energy demands of the population. The production at national scale that we estimated converts into 10,000 - 15,000 GWh y<sup>-1 </sup>of energy in the charcoal. The term "Charcoal Trap" we introduce, describes the fact that this energy supply has to be substituted when woodlands are protected. One possible solution, a shift in energy supply from charcoal to electricity, would reduce the pressure of forests but requires high investments into grid and power generation. Since Zambia currently cannot generate this money by itself, the country will remain locked in the charcoal trap such as many other of its African neighbours. The question arises whether and how money and technology transfer to increase regenerative electrical power generation should become part of a post-Kyoto process. Furthermore, better inventory data are urgently required to improve knowledge about the current state of the woodland usage and recovery. Net greenhouse gas emissions could be reduced substantially by improving the post-harvest management, charcoal production technology and/or providing alternative energy supply.</p
Building a Global Ecosystem Research Infrastructure to Address Global Grand Challenges for Macrosystem Ecology
The development of several large-, "continental"-scale ecosystem research infrastructures over recent decades has provided a unique opportunity in the history of ecological science. The Global Ecosystem Research Infrastructure (GERI) is an integrated network of analogous, but independent, site-based ecosystem research infrastructures (ERI) dedicated to better understand the function and change of indicator ecosystems across global biomes. Bringing together these ERIs, harmonizing their respective data and reducing uncertainties enables broader cross-continental ecological research. It will also enhance the research community capabilities to address current and anticipate future global scale ecological challenges. Moreover, increasing the international capabilities of these ERIs goes beyond their original design intent, and is an unexpected added value of these large national investments. Here, we identify specific global grand challenge areas and research trends to advance the ecological frontiers across continents that can be addressed through the federation of these cross-continental-scale ERIs.Peer reviewe
Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique : algorithms and uncertainly estimation
Eddy covariance technique to measure CO2, water and energy fluxes between biosphere and atmosphere is widely spread and used in various regional networks. Currently more than 250 eddy covariance sites are active around the world measuring carbon exchange at high temporal resolution for different biomes and climatic conditions. In this paper a new standardized set of corrections is introduced and the uncertainties associated with these corrections are assessed for eight different forest sites in Europe with a total of 12 yearly datasets. The uncertainties introduced on the two components GPP (Gross Primary Production) and TER (Terrestrial Ecosystem Respiration) are also discussed and a quantitative analysis presented. Through a factorial analysis we find that generally, uncertainties by different corrections are additive without interactions and that the heuristic u(*)-correction introduces the largest uncertainty. The results show that a standardized data processing is needed for an effective comparison across biomes and for underpinning interannual variability. The methodology presented in this paper has also been integrated in the European database of the eddy covariance measurements.Eddy covariance technique to measure CO2, water and energy fluxes between biosphere and atmosphere is widely spread and used in various regional networks. Currently more than 250 eddy covariance sites are active around the world measuring carbon exchange at high temporal resolution for different biomes and climatic conditions. In this paper a new standardized set of corrections is introduced and the uncertainties associated with these corrections are assessed for eight different forest sites in Europe with a total of 12 yearly datasets. The uncertainties introduced on the two components GPP (Gross Primary Production) and TER (Terrestrial Ecosystem Respiration) are also discussed and a quantitative analysis presented. Through a factorial analysis we find that generally, uncertainties by different corrections are additive without interactions and that the heuristic u(*)-correction introduces the largest uncertainty. The results show that a standardized data processing is needed for an effective comparison across biomes and for underpinning interannual variability. The methodology presented in this paper has also been integrated in the European database of the eddy covariance measurements.Eddy covariance technique to measure CO2, water and energy fluxes between biosphere and atmosphere is widely spread and used in various regional networks. Currently more than 250 eddy covariance sites are active around the world measuring carbon exchange at high temporal resolution for different biomes and climatic conditions. In this paper a new standardized set of corrections is introduced and the uncertainties associated with these corrections are assessed for eight different forest sites in Europe with a total of 12 yearly datasets. The uncertainties introduced on the two components GPP (Gross Primary Production) and TER (Terrestrial Ecosystem Respiration) are also discussed and a quantitative analysis presented. Through a factorial analysis we find that generally, uncertainties by different corrections are additive without interactions and that the heuristic u(*)-correction introduces the largest uncertainty. The results show that a standardized data processing is needed for an effective comparison across biomes and for underpinning interannual variability. The methodology presented in this paper has also been integrated in the European database of the eddy covariance measurements.Peer reviewe
Surface-atmosphere exchange of ammonia over peatland using QCL-based eddy-covariance measurements and inferential modeling
Recent advances in laser spectrometry offer new opportunities to investigate ecosystem-atmosphere exchange of environmentally relevant trace gases. In this study, we demonstrate the applicability of a quantum cascade laser (QCL) absorption spectrometer to continuously measure ammonia concentrations at high time resolution and thus to quantify the net exchange between a seminatural peatland ecosystem and the atmosphere based on the eddy-covariance approach. Changing diurnal patterns of both ammonia concentration and fluxes were found during different periods of the campaign. We observed a clear tipping point in early spring with decreasing ammonia deposition velocities and increasingly bidirectional fluxes that occurred after the switch from dormant vegetation to CO2 uptake but was triggered by a significant weather change. While several biophysical parameters such as temperature, radiation, and surface wetness were identified to partially regulate ammonia exchange at the site, the seasonal concentration pattern was clearly dominated by agricultural practices in the surrounding area. Comparing the results of a compensation point model with our measurement-based flux estimates showed considerable differences in some periods of the campaign due to overestimation of non-stomatal resistances caused by low acid ratios. The total cumulative campaign exchange of ammonia after 9 weeks, however, differed only in a 6% deviation with 911 and 857 gNH(3)-N ha(-1) deposition being found by measurements and modeling, respectively. Extrapolating our findings to an entire year, ammonia deposition was lower than reported by Hurkuck et al. (2014) for the same site in previous years using denuder systems. This was likely due to a better representation of the emission component in the net signal of eddy-covariance fluxes as well as better adapted site-specific parameters in the model. Our study not only stresses the importance of high-quality measurements for studying and assessing land surface-atmosphere interactions but also demonstrates the potential of QCL spectrometers for continuous observation of reactive nitrogen species as important additional instruments within long-term monitoring research infrastructures such as ICOS or NEON at sites with strong nearby ammonia sources leading to relatively high mean background concentrations and fluxes.Peer reviewe
- …