537 research outputs found

    The planetary nebula IC 5148 and its ionized halo

    Full text link
    Many round or nearly roundish Planetary Nebulae (PNe) show multiple shells and halo structures during their evolutionary stage near the maximum temperature of their central star. Controversial debate is currently ongoing if these structures are recombination halos, as suggested by hydrodynamic modelling efforts, or ionized material. Recently we discovered a halo with even somewhat unusual structures around the sparsely studied PN IC~5148 and present for the first time spectroscopy going out to the halo of such a PN.} resolution spectroscopy is used to derive dust chemistry and mineralogy. We investigate the spatial distribution of material and its ionization state from the center of the nebula up to the very outskirts of the halo. We obtained long-slit low resolution spectroscopy (FORS2@VLT) of the nebula in two position angles, which we used to investigate the nebular structure and its halo in the optical range from 450 to 880\,nm. In addition we used medium resolution spectra taken with X-SHOOTER@VLT ranging from 320 nm to 2.4 mu to derive atmospheric parameters for the central star. We obtained the distance and position in the Galaxy from various methods combined with GAIA DR2 data. We also applied Cloudy models to the nebula in order to derive physical parameters of the various regions. We obtained spatially resolved structures and detailed descriptions of the outrunning shock front and a set of unusual halo structures denoted to further shock. The halo structures appears clearly as hot ionized material. Furthermore we derived a reliable photometric value for the central star at a GAIA distance of D=1.3kpc. Considering the large distance z=1.0z=1.0\,kpc from the galactic plane together to its non-circular motion in the galaxy and, a metallicity only slightly below that of typical disk PNe, most likely IC 5148 originates from a thick disk population star.Comment: 12 pages, 17 figures, accepted for publication in Astronomy & Astrophysic

    Molecfit: A general tool for telluric absorption correction II. Quantitative evaluation on ESO-VLT X-Shooter spectra

    Full text link
    Context: Absorption by molecules in the Earth's atmosphere strongly affects ground-based astronomical observations. The resulting absorption line strength and shape depend on the highly variable physical state of the atmosphere, i.e. pressure, temperature, and mixing ratio of the different molecules involved. Usually, supplementary observations of so-called telluric standard stars (TSS) are needed to correct for this effect, which is expensive in terms of telescope time. We have developed the software package molecfit to provide synthetic transmission spectra based on parameters obtained by fitting narrow ranges of the observed spectra of scientific objects. These spectra are calculated by means of the radiative transfer code LBLRTM and an atmospheric model. In this way, the telluric absorption correction for suitable objects can be performed without any additional calibration observations of TSS. Aims: We evaluate the quality of the telluric absorption correction using molecfit with a set of archival ESO-VLT X-Shooter visible and near-infrared spectra. Methods: Thanks to the wavelength coverage from the U to the K band, X-Shooter is well suited to investigate the quality of the telluric absorption correction with respect to the observing conditions, the instrumental set-up, input parameters of the code, the signal-to-noise of the input spectrum, and the atmospheric profiles. These investigations are based on two figures of merit, I_off and I_res, that describe the systematic offsets and the remaining small-scale residuals of the corrections. We also compare the quality of the telluric absorption correction achieved with moelcfit to the classical method based on a telluric standard star. (Abridged)Comment: Acc. by A&A; Software available via ESO: http://www.eso.org/sci/software/pipelines/skytools

    Unifying W-Algebras

    Full text link
    We show that quantum Casimir W-algebras truncate at degenerate values of the central charge c to a smaller algebra if the rank is high enough: Choosing a suitable parametrization of the central charge in terms of the rank of the underlying simple Lie algebra, the field content does not change with the rank of the Casimir algebra any more. This leads to identifications between the Casimir algebras themselves but also gives rise to new, `unifying' W-algebras. For example, the kth unitary minimal model of WA_n has a unifying W-algebra of type W(2,3,...,k^2 + 3 k + 1). These unifying W-algebras are non-freely generated on the quantum level and belong to a recently discovered class of W-algebras with infinitely, non-freely generated classical counterparts. Some of the identifications are indicated by level-rank-duality leading to a coset realization of these unifying W-algebras. Other unifying W-algebras are new, including e.g. algebras of type WD_{-n}. We point out that all unifying quantum W-algebras are finitely, but non-freely generated.Comment: 13 pages (plain TeX); BONN-TH-94-01, DFTT-15/9

    Optical Spectroscopy of IRAS 02091+6333

    Full text link
    We present a detailed spectroscopic investigation, spanning four winters, of the asymptotic giant branch (AGB) star IRAS 02091+6333. Zijlstra & Weinberger (2002) found a giant wall of dust around this star and modelled this unique phenomenon. However their work suffered from the quality of the optical investigations of the central object. Our spectroscopic investigation allowed us to define the spectral type and the interstellar foreground extinction more precisely. Accurate multi band photometry was carried out. This provides us with the possibility to derive the physical parameters of the system. The measurements presented here suggest a weak irregular photometric variability of the target, while there is no evidence of a spectroscopic variability over the last four years.Comment: 5 pages, Latex, 3 tables, 4 figures, Astron. & Astrophys. - in pres

    Skycorr: A general tool for spectroscopic sky subtraction

    Get PDF
    Airglow emission lines, which dominate the optical-to-near-IR sky radiation, show strong, line-dependent variability on various time scales. Therefore, the subtraction of the sky background in the affected wavelength regime becomes a problem if plain sky spectra have to be taken at a different time as the astronomical data. A solution of this issue is the physically motivated scaling of the airglow lines in the plain sky data to fit the sky lines in the object spectrum. We have developed a corresponding instrument-independent approach based on one-dimensional spectra. Our code skycorr separates sky lines and sky/object continuum by an iterative approach involving a line finder and airglow line data. The sky lines are grouped according to their expected variability. The line groups in the sky data are then scaled to fit the sky in the science data. Required pixel-specific weights for overlapping groups are taken from a comprehensive airglow model. Deviations in the wavelength calibration are corrected by fitting Chebyshev polynomials and rebinning via asymmetric damped sinc kernels. The scaled sky lines and the sky continuum are subtracted separately. VLT X-Shooter data covering time intervals from two minutes to about one year were selected to illustrate the performance. Except for short time intervals of a few minutes, the sky line residuals were several times weaker than for sky subtraction without fitting. Further tests show that skycorr performs consistently better than the method of Davies (2007) developed for VLT SINFONI data.Comment: 17 pages, 18 figures, accepted for publication in A&

    Flux calibration of medium-resolution spectra from 300 nm to 2500 nm: Model reference spectra and telluric correction

    Full text link
    While the near-infrared wavelength regime is becoming more and more important for astrophysics there is a marked lack of spectrophotometric standard star data that would allow the flux calibration of such data. Furthermore, flux calibrating medium- to high-resolution \'echelle spectroscopy data is challenging even in the optical wavelength range, because the available flux standard data are often too coarsely sampled. We will provide standard star reference data that allow users to derive response curves from 300nm to 2500nm for spectroscopic data of medium to high resolution, including those taken with \'echelle spectrographs. In addition we describe a method to correct for moderate telluric absorption without the need of observing telluric standard stars. As reference data for the flux standard stars we use theoretical spectra derived from stellar model atmospheres. We verify that they provide an appropriate description of the observed standard star spectra by checking for residuals in line cores and line overlap regions in the ratios of observed (X-shooter) spectra to model spectra. The finally selected model spectra are then corrected for remaining mismatches and photometrically calibrated using independent observations. The correction of telluric absorption is performed with the help of telluric model spectra.We provide new, finely sampled reference spectra without telluric absorption for six southern flux standard stars that allow the users to flux calibrate their data from 300 nm to 2500 nm, and a method to correct for telluric absorption using atmospheric models.Comment: Reference spectra available at CDS. Published in A&A 568, A9, 201

    ARCRAIDER II: Arc search in a sample of non-Abell clusters

    Full text link
    We present a search for gravitational arcs in a sample of X-ray luminous, medium redshift clusters of galaxies. The sample of clusters is called ARCRAIDER, is based on the ROSAT Bright Survey (RBS) and fulfills the following criteria: (a) X-ray luminosity Lx>=0.5x10^45erg/s (0.5-2keV band), (b) redshift range 0.1<=z<=0.52, (c) classified as clusters in the RBS, (d) not a member of the Abell catalogue and, finally, (e) visible from the ESO sites La Silla/Paranal (declination \delta<=20deg). In total we found more than 35 (giant) arc/arclet candidates, including a possible radial arc, one galaxy-galaxy lensing event and a possible quasar triple image in 14 of the 21 clusters of galaxies. Hence 66% of the sample members are possible lenses.Comment: Accepted for publication in Astronomy and Astrophysics; 8 pages (excl. Appendix), 6 figures, 9 tables; Please download the high-res images of the appendix from http://astro-staff.uibk.ac.at/~w.kausch/ARCRAIDER_II_images.tar.g

    Measuring FeO variation using astronomical spectroscopic observations

    Get PDF
    Airglow emission lines of OH, O₂, O and Na are commonly used to probe the MLT (mesosphere–lower thermosphere) region of the atmosphere. Furthermore, molecules like electronically excited NO, NiO and FeO emit a (pseudo-) continuum. These continua are harder to investigate than atomic emission lines. So far, limb-sounding from space and a small number of ground-based low-to-medium resolution spectra have been used to measure FeO emission in the MLT. In this study the medium-to-high resolution echelle spectrograph X-shooter at the Very Large Telescope (VLT) in the Chilean Atacama Desert (24°37′ S, 70°24′ W; 2635 m) is used to study the FeO pseudo-continuum in the range from 0.5 to 0.72 µm based on 3662 spectra. Variations of the FeO spectrum itself, as well as the diurnal and seasonal behaviour of the FeO and Na emission intensities, are reported. These airglow emissions are linked by their common origin, meteoric ablation, and they share O₃ as a common reactant. Major differences are found in the main emission peak of the FeO airglow spectrum between 0.58 and 0.61 µm, compared with a theoretical spectrum. The FeO and Na airglow intensities exhibit a similar nocturnal variation and a semi-annual seasonal variation with equinoctial maxima. This is satisfactorily reproduced by a whole atmosphere chemistry climate model, if the quantum yields for the reactions of Fe and Na with O₃ are 13 ± 3 and 11 ± 2 % respectively. However, a comparison between the modelled O₃ in the upper mesosphere and measurements of O₃ made with the SABER satellite instrument suggests that these quantum yields may be a factor of -2 smaller

    Ghost Systems: A Vertex Algebra Point of View

    Full text link
    Fermionic and bosonic ghost systems are defined each in terms of a single vertex algebra which admits a one-parameter family of conformal structures. The observation that these structures are related to each other provides a simple way to obtain character formulae for a general twisted module of a ghost system. The U(1) symmetry and its subgroups that underly the twisted modules also define an infinite set of invariant vertex subalgebras. Their structure is studied in detail from a W-algebra point of view with particular emphasis on Z_N-invariant subalgebras of the fermionic ghost system.Comment: 20 pages, plain Te
    corecore