251 research outputs found

    Stochastic equation for a jumping process with long-time correlations

    Full text link
    A jumping process, defined in terms of jump size distribution and waiting time distribution, is presented. The jumping rate depends on the process value. The process, which is Markovian and stationary, relaxes to an equilibrium and is characterized by the power-law autocorrelation function. Therefore, it can serve as a model of the 1/f noise as well as a model of the stochastic force in the generalized Langevin equation. This equation is solved for the noise correlations 1/t; the resulting velocity distribution has sharply falling tails. The system preserves the memory about the initial condition for a very long time.Comment: 7 pages, 5 Postscript figure

    Muscle pathology in myotonic dystrophy: light and electron microscopic investigation in eighteen patients

    Get PDF
    Myotonic dystrophy (DM) is the most common muscular dystrophy in adults. Two known genetic subtypes include DM1 (myotonic dystrophy type 1) and DM2 (myotonic dystrophy type 2). Genetic testing is considered as the only reliable diagnostic criterion in myotonic dystrophies. Relatively little is known about DM1 and DM2 myopathology. Thus, the aim of our study was to characterise light and electron microscopic features of DM1 and DM2 in patients with genetically proven types of the disease. We studied 3 DM1 cases and 15 DM2 cases from which muscle biopsies were taken for diagnostic purposes during the period from 1973 to 2006, before genetic testing became available at our hospital. The DM1 group included 3 males (age at biopsy 15–19). The DM2 group included 15 patients (5 men and 10 women, age at biopsy 26–60). The preferential type 1 fibre atrophy was seen in all three DM1 cases in light microscopy, and substantial central nucleation was present in two biopsies. Electron microscopy revealed central nuclei in all three examined muscle biopsies. No other structural or degenerative changes were detected, probably due to the young age of our patients. Central nucleation, prevalence of type 2 muscle fibres, and the presence of pyknotic nuclear clumps were observed in DM2 patients in light microscopy. Among the ultrastructural abnormalities observed in our DM2 group, the presence of internal nuclei, severely atrophied muscle fibres, and lipofuscin accumulation were consistent findings. In addition, a variety of ultrastructural abnormalities were identified by us in DM2. It appears that no single ultrastructural abnormality is characteristic for the DM2 muscle pathology. It seems, however, that certain constellations of morphological changes might be indicative of certain types of myotonic dystrophy. (Folia Morphol 2011; 70, 2: 121–129

    In-plane uniaxial anisotropy rotations in (Ga,Mn)As thin films

    Full text link
    We show, by SQUID magnetometry, that in (Ga,Mn)As films the in-plane uniaxial magnetic easy axis is consistently associated with particular crystallographic directions and that it can be rotated from the [-110] direction to the [110] direction by low temperature annealing. We show that this behavior is hole-density-dependent and does not originate from surface anisotropy. The presence of uniaxial anisotropy as well its dependence on the hole-concentration and temperature can be explained in terms of the p-d Zener model of the ferromagnetism assuming a small trigonal distortion.Comment: 4 pages, 6 Postscript figures, uses revtex

    Beam profile investigation of the new collimator system for the J-PET detector

    Get PDF
    Jagiellonian Positron Emission Tomograph (J-PET) is a multi-purpose detector which will be used for search for discrete symmetries violations in the decays of positronium atoms and for investigations with positronium atoms in life-sciences and medical diagnostics. In this article we present three methods for determination of the beam profile of collimated annihilation gamma quanta. Precise monitoring of this profile is essential for time and energy calibration of the J-PET detector and for the determination of the library of model signals used in the hit-time and hit-position reconstruction. We have we have shown that usage of two lead bricks with dimensions of 5x10x20 cm^3 enables to form a beam of annihilation quanta with Gaussian profile characterized by 1 mm FWHM. Determination of this characteristic is essential for designing and construction the collimator system for the 24-module J-PET prototype. Simulations of the beam profile for different collimator dimensions were performed. This allowed us to choose optimal collimation system in terms of the beam profile parameters, dimensions and weight of the collimator taking into account the design of the 24 module J-PET detector.Comment: 14 pages, 9 figure

    Searches for discrete symmetries violation in ortho-positronium decay using the J-PET detector

    Get PDF
    In this paper we present prospects for using the J-PET detector to search for discrete symmetries violations in a purely leptonic system of the positronium atom. We discuss tests of CP and CPT symmetries by means of ortho-positronium decays into three photons. No zero expectation values for chosen correlations between ortho-positronium spin and momentum vectors of photons would imply the existence of physics phenomena beyond the Standard Model. Previous measurements resulted in violation amplitude parameters for CP and CPT symmetries consistent with zero, with an uncertainty of about 10-3. The J-PET detector allows to determine those values with better precision thanks to a unique time and angular esolution combined with a high geometrical acceptance. Achieving the aforementioned is possible due to application of polymer scintillators instead of crystals as detectors of annihilation quanta.Comment: in Nukleonika 201

    Studies of unicellular micro-organisms Saccharomyces cerevisiae by means of Positron Annihilation Lifetime Spectroscopy

    Get PDF
    Results of Positron Annihilation Lifetime Spectroscopy (PALS) and microscopic studies on simple microorganisms: brewing yeasts are presented. Lifetime of ortho - positronium (o-Ps) were found to change from 2.4 to 2.9 ns (longer lived component) for lyophilised and aqueous yeasts, respectively. Also hygroscopicity of yeasts in time was examined, allowing to check how water - the main component of the cell - affects PALS parameters, thus lifetime of o-Ps were found to change from 1.2 to 1.4 ns (shorter lived component) for the dried yeasts. The time sufficient to hydrate the cells was found below 10 hours. In the presence of liquid water an indication of reorganization of yeast in the molecular scale was observed. Microscopic images of the lyophilised, dried and wet yeasts with best possible resolution were obtained using Inverted Microscopy (IM) and Environmental Scanning Electron Microscopy (ESEM) methods. As a result visible changes to the surface of the cell membrane were observed in ESEM images.Comment: Nukleonika (2015

    Potential of the J-PET detector for studies of discrete symmetries in decays of positronium atom - a purely leptonic system

    Get PDF
    The Jagiellonian Positron Emission Tomograph (J-PET) was constructed as a prototype of the cost-effective scanner for the simultaneous metabolic imaging of the whole human body. Being optimized for the detection of photons from the electron-positron annihilation with high time- and high angular-resolution, it constitutes a multi-purpose detector providing new opportunities for studying the decays of positronium atoms. Positronium is the lightest purely leptonic object decaying into photons. As an atom bound by a central potential it is a parity eigenstate, and as an atom built out of an electron and an anti-electron it is an eigenstate of the charge conjugation operator. Therefore, the positronium is a unique laboratory to study discrete symmetries whose precision is limited in principle by the effects due to the weak interactions expected at the level of (~1014^{-14}) and photon-photon interactions expected at the level of (~109^{-9}). The J-PET detector enables to perform tests of discrete symmetries in the leptonic sector via the determination of the expectation values of the discrete-symmetries-odd operators, which may be constructed from the spin of ortho-positronium atom and the momenta and polarization vectors of photons originating from its annihilation. In this article we present the potential of the J-PET detector to test the C, CP, T and CPT symmetries in the decays of positronium atoms.Comment: 27 pages, 6 figure

    PALS investigations of free volumes thermal expansion of J-PET plastic scintillator synthesized in polystyrene matrix

    Get PDF
    The polystyrene dopped with 2,5-diphenyloxazole as a primary fluor and 2-(4-styrylphenyl)benzoxazole as a wavelength shifter, prepared as a plastic scintillator was investigated using positronium probe in wide range of temperatures from 123 to 423 K. Three structural transitions at 260 K, 283 K and 370 K were found in the material. In the o-Ps intensity dependence on temperature, the significant hysteresis is observed. Heated to 370 K, the material exhibits the o-Ps intensity variations in time.Comment: in Nukleonika 201

    A feasibility study of ortho-positronium decays measurement with the J-PET scanner based on plastic scintillators

    Get PDF
    We present a study of the application of the Jagiellonian Positron Emission Tomograph (J-PET) for the registration of gamma quanta from decays of ortho-positronium (o-Ps). The J-PET is the first positron emission tomography scanner based on organic scintillators in contrast to all current PET scanners based on inorganic crystals. Monte Carlo simulations show that the J-PET as an axially symmetric and high acceptance scanner can be used as a multi-purpose detector well suited to pursue research including e.g. tests of discrete symmetries in decays of ortho-positronium in addition to the medical imaging. The gamma quanta originating from o-Ps decay interact in the plastic scintillators predominantly via the Compton effect, making the direct measurement of their energy impossible. Nevertheless, it is shown in this paper that the J-PET scanner will enable studies of the o-Ps3γ\to3\gamma decays with angular and energy resolution equal to σ(θ)0.4\sigma(\theta) \approx 0.4^{\circ} and σ(E)4.1\sigma(E) \approx 4.1 keV, respectively. An order of magnitude shorter decay time of signals from plastic scintillators with respect to the inorganic crystals results not only in better timing properties crucial for the reduction of physical and instrumental background, but also suppresses significantly the pileups, thus enabling compensation of the lower efficiency of the plastic scintillators by performing measurements with higher positron source activities
    corecore