46 research outputs found

    Downregulation of metastasis suppressor 1(MTSS1) is associated with nodal metastasis and poor outcome in Chinese patients with gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The putative tumor metastasis suppressor 1(MTSS1) is an actin-binding scaffold protein that has been implicated to play an important role in carcinogenesis and cancer metastasis, yet its role in the development of gastric cancer has not been well illustrated. In this study, we detected MTSS1 expression and explored its clinical significance in gastric cancer.</p> <p>Methods</p> <p>Immunohistochemistry was performed using tissue microarrays containing gastric adenocarcinoma specimens from 1,072 Chinese patients with normal adjacent mucosa, primary gastric cancer and lymph node (LN) metastasis and specific antibody against MTSS1. MTSS1 mRNA and protein expression were detected by reverse transcription-polymerase chain reaction and Western blotting. The clinical follow-up was done in the 669 patients living in Shanghai that was chose from the 1072 cases.</p> <p>Results</p> <p>Complete loss of MTSS1 expression was observed in 751 cases (70.1%) of the 1,072 primary tumors and 103 (88%) of 117 nodal metastases; and loss of MTSS1 expression was significantly associated with poorly differentiated tumors, large tumor size, deep invasion level, the presence of nodal metastases and advanced disease stage. Moreover, multivariate analysis demonstrated that loss of MTSS1 expression correlated significantly with poor survival rates (RR = 0.194, 95% CI = 0.144-0.261, P < 0.001).</p> <p>Conclusions</p> <p>MTSS1 expression decreased significantly as gastric cancer progressed and metastasized, suggesting MTSS1 may serve as a useful biomarker for the prediction of outcome of gastric cancer.</p

    GPR139, an Orphan Receptor Highly Enriched in the Habenula and Septum, Is Activated by the Essential Amino Acids L-Tryptophan and L-Phenylalanine s

    Get PDF
    ABSTRACT GPR139 is an orphan G-protein-coupled receptor expressed in the central nervous system. To identify its physiologic ligand, we measured GPR139 receptor activity from recombinant cells after treatment with amino acids, orphan ligands, serum, and tissue extracts. GPR139 activity was measured using guanosine 59-O-(3-[ Sequence alignment revealed that GPR139 is highly conserved across species, and RNA sequencing studies of rat and human tissues indicated its exclusive expression in the brain and pituitary gland. Immunohistochemical analysis showed specific expression of the receptor in circumventricular regions of the habenula and septum in mice. Together, these findings suggest that L-Trp and L-Phe are candidate physiologic ligands for GPR139, and we hypothesize that this receptor may act as a sensor to detect dynamic changes of L-Trp and L-Phe in the brain

    RESTORE-IMI 1: A Multicenter, Randomized, Doubleblind Trial Comparing Efficacy and Safety of Imipenem/Relebactam vs Colistin Plus Imipenem in Patients With Imipenem-nonsusceptible Bacterial Infections

    Get PDF
    Background. The β-lactamase inhibitor relebactam can restore imipenem activity against imipenem-nonsusceptible gram-negative pathogens. We evaluated imipenem/relebactam for treating imipenem-nonsusceptible infections. Methods. Randomized, controlled, double-blind, phase 3 trial. Hospitalized patients with hospital-acquired/ventilatorassociated pneumonia, complicated intraabdominal infection, or complicated urinary tract infection caused by imipenemnonsusceptible (but colistin- and imipenem/relebactam-susceptible) pathogens were randomized 2:1 to 5–21 days imipenem/ relebactam or colistin+imipenem. Primary endpoint: favorable overall response (defined by relevant endpoints for each infection type) in the modified microbiologic intent-to-treat (mMITT) population (qualifying baseline pathogen and ≥1 dose study treatment). Secondary endpoints: clinical response, all-cause mortality, and treatment-emergent nephrotoxicity. Safety analyses included patients with ≥1 dose study treatment. Results. Thirty-one patients received imipenem/relebactam and 16 colistin+imipenem. Among mITT patients (n = 21 imipenem/relebactam, n = 10 colistin+imipenem), 29% had Acute Physiology and Chronic Health Evaluation II scores >15, 23% had creatinine clearance <60 mL/min, and 35% were aged ≥65 years. Qualifying baseline pathogens: Pseudomonas aeruginosa (77%), Klebsiella spp. (16%), other Enterobacteriaceae (6%). Favorable overall response was observed in 71% imipenem/relebactam and 70% colistin+imipenem patients (90% confidence interval [CI] for difference, –27.5, 21.4), day 28 favorable clinical response in 71% and 40% (90% CI, 1.3, 51.5), and 28-day mortality in 10% and 30% (90% CI, –46.4, 6.7), respectively. Serious adverse events (AEs) occurred in 10% of imipenem/relebactam and 31% of colistin+imipenem patients, drug-related AEs in 16% and 31% (no drugrelated deaths), and treatment-emergent nephrotoxicity in 10% and 56% (P = .002), respectively. Conclusions. Imipenem/relebactam is an efficacious and well-tolerated treatment option for carbapenem-nonsusceptible infection

    Histone modification profiling in breast cancer cell lines highlights commonalities and differences among subtypes

    Get PDF
    Abstract Background Epigenetic regulators are frequently mutated or aberrantly expressed in a variety of cancers, leading to altered transcription states that result in changes in cell identity, behavior, and response to therapy. Results To define alterations in epigenetic landscapes in breast cancers, we profiled the distributions of 8 key histone modifications by ChIP-Seq, as well as primary (GRO-seq) and steady state (RNA-Seq) transcriptomes, across 13 distinct cell lines that represent 5 molecular subtypes of breast cancer and immortalized human mammary epithelial cells. Discussion Using combinatorial patterns of distinct histone modification signals, we defined subtype-specific chromatin signatures to nominate potential biomarkers. This approach identified AFAP1-AS1 as a triple negative breast cancer-specific gene associated with cell proliferation and epithelial-mesenchymal-transition. In addition, our chromatin mapping data in basal TNBC cell lines are consistent with gene expression patterns in TCGA that indicate decreased activity of the androgen receptor pathway but increased activity of the vitamin D biosynthesis pathway. Conclusions Together, these datasets provide a comprehensive resource for histone modification profiles that define epigenetic landscapes and reveal key chromatin signatures in breast cancer cell line subtypes with potential to identify novel and actionable targets for treatment

    Histone modification profiling in breast cancer cell lines highlights commonalities and differences among subtypes

    Get PDF
    Abstract Background Epigenetic regulators are frequently mutated or aberrantly expressed in a variety of cancers, leading to altered transcription states that result in changes in cell identity, behavior, and response to therapy. Results To define alterations in epigenetic landscapes in breast cancers, we profiled the distributions of 8 key histone modifications by ChIP-Seq, as well as primary (GRO-seq) and steady state (RNA-Seq) transcriptomes, across 13 distinct cell lines that represent 5 molecular subtypes of breast cancer and immortalized human mammary epithelial cells. Discussion Using combinatorial patterns of distinct histone modification signals, we defined subtype-specific chromatin signatures to nominate potential biomarkers. This approach identified AFAP1-AS1 as a triple negative breast cancer-specific gene associated with cell proliferation and epithelial-mesenchymal-transition. In addition, our chromatin mapping data in basal TNBC cell lines are consistent with gene expression patterns in TCGA that indicate decreased activity of the androgen receptor pathway but increased activity of the vitamin D biosynthesis pathway. Conclusions Together, these datasets provide a comprehensive resource for histone modification profiles that define epigenetic landscapes and reveal key chromatin signatures in breast cancer cell line subtypes with potential to identify novel and actionable targets for treatment.https://deepblue.lib.umich.edu/bitstream/2027.42/142394/1/12864_2018_Article_4533.pd
    corecore