22 research outputs found

    LPJmL4 – a dynamic global vegetation model with managed land – Part 1: Model description

    Get PDF
    This paper provides a comprehensive description of the newest version of the Dynamic Global Vegetation Model with managed Land, LPJmL4. This model simulates – internally consistently – the growth and productivity of both natural and agricultural vegetation as coherently linked through their water, carbon, and energy fluxes. These features render LPJmL4 suitable for assessing a broad range of feedbacks within and impacts upon the terrestrial biosphere as increasingly shaped by human activities such as climate change and land use change. Here we describe the core model structure, including recently developed modules now unified in LPJmL4. Thereby, we also review LPJmL model developments and evaluations in the field of permafrost, human and ecological water demand, and improved representation of crop types. We summarize and discuss LPJmL model applications dealing with the impacts of historical and future environmental change on the terrestrial biosphere at regional and global scale and provide a comprehensive overview of LPJmL publications since the first model description in 2007. To demonstrate the main features of the LPJmL4 model, we display reference simulation results for key processes such as the current global distribution of natural and managed ecosystems, their productivities, and associated water fluxes. A thorough evaluation of the model is provided in a companion paper. By making the model source code freely available at https://gitlab.pik-potsdam.de/lpjml/LPJmL, we hope to stimulate the application and further development of LPJmL4 across scientific communities in support of major activities such as the IPCC and SDG process

    Memory-Based Mismatch Response to Frequency Changes in Rats

    Get PDF
    Any occasional changes in the acoustic environment are of potential importance for survival. In humans, the preattentive detection of such changes generates the mismatch negativity (MMN) component of event-related brain potentials. MMN is elicited to rare changes (‘deviants’) in a series of otherwise regularly repeating stimuli (‘standards’). Deviant stimuli are detected on the basis of a neural comparison process between the input from the current stimulus and the sensory memory trace of the standard stimuli. It is, however, unclear to what extent animals show a similar comparison process in response to auditory changes. To resolve this issue, epidural potentials were recorded above the primary auditory cortex of urethane-anesthetized rats. In an oddball condition, tone frequency was used to differentiate deviants interspersed randomly among a standard tone. Mismatch responses were observed at 60–100 ms after stimulus onset for frequency increases of 5% and 12.5% but not for similarly descending deviants. The response diminished when the silent inter-stimulus interval was increased from 375 ms to 600 ms for +5% deviants and from 600 ms to 1000 ms for +12.5% deviants. In comparison to the oddball condition the response also diminished in a control condition in which no repetitive standards were presented (equiprobable condition). These findings suggest that the rat mismatch response is similar to the human MMN and indicate that anesthetized rats provide a valuable model for studies of central auditory processing

    The effect of esmolol on cerebral blood flow, cerebral vasoreactivity, and cognitive performance: A functional magnetic resonance imaging study

    No full text
    Esmolol is often applied perioperatively to maintain stable hemodynamic conditions in neurosurgical patients. Little is known, however, about its effects on cerebral circulation. The authors employed functional magnetic resonance imaging based on blood oxygenation level-dependent contrast to explore the effect of esmolol on the human brain. The purpose of the study was to investigate the effect of esmolol on cerebral blood flow, cerebral vasoreactivity, and cognitive performance. Ten healthy volunteers were investigated in two separate experimental sessions using functional magnetic resonance imaging. During the first experimental session, a hyperventilation task and a cognitive task, subjects had to perform both tasks twice, once after administration of an esmolol bolus of 1 mg/kg followed by a continuous infusion of 150 microg.kg.min and once without beta-blockade, in a random order. During the second experimental session subjects were scanned at resting state after administration of esmolol. Furthermore, the effect of the esmolol dose on hemodynamic changes caused by beta-adrenergic stimulation with orciprenaline was investigated. Esmolol decreased heart rate and blood pressure during the various experimental conditions and blunted the increase in heart rate and blood pressure caused by orciprenaline. Infusion of esmolol affects neither the blood oxygenation level-dependent contrast during the functional challenges nor the reaction times during the cognitive task. However, the esmolol bolus caused a brief blood oxygenation level-dependent contrast increase. The results indicate that effective beta-blockade with esmolol does not affect cerebral blood flow, cerebrovascular reactivity, or cognitive performance

    Teilprojektübergreifende Zusammenarbeit bei der Entwicklung von Anpassungsmaßnahmen der Landwirtschaft an sommerliche Trockenheit

    Get PDF
    Die projizierte Klimaänderung für die Metropolregion Hamburg (MRH) führt vermehrt zu sommerlichen Trockenperioden. Besonders im Südosten der Region wird dadurch die Wasserverfügbarkeit als limitierender Produktionsfaktor in der Landwirtschaft weiter begrenzt. Eine Abnahme der Grundwasserneubildung und zugleich zunehmender Wasserbedarf der Pflanzen erfordert eine Anpassung der Bewässerungsmethoden und Landbewirtschaftung. Dazu untersuchen Projekte innerhalb des KLIMZUG-NORD Themenfelds T3 „Zukunftsfähige Kulturlandschaften“ die Auswirkungen des Klimawandels auf die Verfügbarkeit und Qualität des Wassers und entwickeln entsprechende Anpassungsmaßnahmen der Landwirtschaft bei gleichzeitiger Berücksichtigung der Ansprüche des Naturschutzes. Es wurden Kooperationen zwischen Akteuren aus Forschung, Planung, Wasser- und Landwirtschaft gebildet und vertieft; im Folgenden sind Ausschnitte der interdisziplinären Zusammenarbeit in den Modellregionen Lüneburger Heide und Biosphärenreservat Niedersächsische Elbtalaue präsentiert
    corecore