2,028 research outputs found
Electronic Correlations in Oligo-acene and -thiophene Organic Molecular Crystals
From first principles calculations we determine the Coulomb interaction
between two holes on oligo-acene and -thiophene molecules in a crystal, as a
function of the oligomer length. The relaxation of the molecular geometry in
the presence of holes is found to be small. In contrast, the electronic
polarization of the molecules that surround the charged oligomer, reduces the
bare Coulomb repulsion between the holes by approximately a factor of two. In
all cases the effective hole-hole repulsion is much larger than the calculated
valence bandwidth, which implies that at high doping levels the properties of
these organic semiconductors are determined by electron-electron correlations.Comment: 5 pages, 3 figure
Macroscopic Degeneracy and Emergent Frustration in a Honeycomb Lattice Magnet
Using a hybrid method based on fermionic diagonalization and classical Monte
Carlo, we investigate the interplay between itinerant and localized spins, with
competing double- and super-exchange interactions, on a honeycomb lattice. For
moderate superexchange, a geometrically frustrated triangular lattice of
hexagons forms spontaneously. For slightly larger superexchange a dimerized
groundstate is stable that has macroscopic degeneracy. The presence of these
states on a non-frustrated honeycomb lattice highlights a novel phenomenon in
this itinerant electron system: emergent geometrical frustration and
degeneracy.Comment: 4+ pages, 4 figures; published versio
Inter-site Coulomb interaction and Heisenberg exchange
Based on exact diagonalization results for small clusters we discuss the
effect of inter-site Coulomb repulsion in Mott-Hubbard or charge transfer
insulators. Whereas the exchange constant J for direct exchange is
substantially enhanced by inter-site Coulomb interaction, that for
superexchange is suppressed. The enhancement of J in the single-band models
holds up to the critical value for the charge density wave (CDW) instability,
thus opening the way for large values of J. Single-band Hubbard models with
sufficiently strong inter-site repulsion to be near a CDW instability thus may
provide `physical' realizations of t-J like models with the `unphysical'
parameter ratio J/t=1.Comment: Revtex file, 4 PRB pages, with 5 embedded ps-files. To appear in PRB,
rapid communications. Hardcopies of figures or the entire manuscript may also
be obtained by e-mail request to: [email protected]
Health effects of the Chernobyl disaster: illness or illness behavior? A comparative general health survey in two former Soviet regions.
Results are described of a general health survey (n = 3044) that was conducted 6.5 years after the Chernobyl accident in 1986 in a seriously contaminated region in Belarus and a socioeconomically comparable, but unaffected, region in the Russian Federation. The purpose of the study was to investigate whether there are differences in the general health status of the inhabitants of the two regions that may be attributed to the Chernobyl disaster. A broad-based population sample from each of these regions was studied using a variety of self-report questionnaires. A subsample (n = 449) was further examined with a standardized physical and psychiatric examination. The results show significantly higher scores on the self-report questionnaires and higher medical service utilization in the exposed region. No significant differences were observed in global clinical indices of health. Although there were trends for some disorders to be more prevalent in the exposed region, none of these could be directly attributed to exposure to ionizing radiation. The results of this study suggest that the Chernobyl disaster had a significant long-term impact on psychological well-being, health-related quality of life, and illness behavior in the exposed population
Photoemission spectra of LaMnO3 controlled by orbital excitations
We investigate the spectral function of a hole moving in the orbital-ordered
ferromagnetic planes of LaMnO, and show that it depends critically on the
type of orbital ordering. While the hole does not couple to the spin
excitations, it interacts strongly with the excitations of orbitals
(orbitons), leading to new type of quasiparticles with a dispersion on the
orbiton energy scale and with strongly enhanced mass and reduced weight.
Therefore we predict a large redistribution of spectral weight with respect to
the bands found in local density approximation (LDA) or in LDA+U.Comment: 4 pages, 4 figures, 3 figures embedded, figure 3 correcte
Orbital excitations in LaMnO
We study the recently observed orbital excitations, orbitons, and treat
electron-electron correlations and lattice dynamics on equal footing. It is
shown that the orbiton energy and dispersion are determined by both
correlations and lattice-vibrations. The electron-phonon coupling causes
satellite structures in the orbiton spectral function and the elementary
excitations of the system are mixed modes with both orbital and phonon
character. It is proposed that the satellite structures observed in recent
Raman-scattering experiments on LaMnO are actually orbiton derived
satellites in the phonon spectral function, caused by the phonon-orbiton
interaction.Comment: 4 pages, 3 figures embedde
Resonant Inelastic X-ray Scattering Studies of Elementary Excitations
In the past decade, Resonant Inelastic X-ray Scattering (RIXS) has made
remarkable progress as a spectroscopic technique. This is a direct result of
the availability of high-brilliance synchrotron X-ray radiation sources and of
advanced photon detection instrumentation. The technique's unique capability to
probe elementary excitations in complex materials by measuring their energy-,
momentum-, and polarization-dependence has brought RIXS to the forefront of
experimental photon science. We review both the experimental and theoretical
RIXS investigations of the past decade, focusing on those determining the
low-energy charge, spin, orbital and lattice excitations of solids. We present
the fundamentals of RIXS as an experimental method and then review the
theoretical state of affairs, its recent developments and discuss the different
(approximate) methods to compute the dynamical RIXS response. The last decade's
body of experimental RIXS data and its interpretation is surveyed, with an
emphasis on RIXS studies of correlated electron systems, especially transition
metal compounds. Finally, we discuss the promise that RIXS holds for the near
future, particularly in view of the advent of x-ray laser photon sources.Comment: Review, 67 pages, 44 figure
Paying the pipers: mitigating the impact of anticoagulant rodenticides on predators and scavengers
Anticoagulant rodenticides, mainly second-generation forms, or SGARs, dominate the global market for rodent control. Introduced in the 1970s to counter genetic resistance in rodent populations to first-generation compounds such as warfarin, SGARs are extremely toxic and highly effective killers. However, their tendency to persist and accumulate in the body has led to the widespread contamination of terrestrial predators and scavengers. Commercial chemicals that are classified by regulators as persistent, bio-accumulative, and toxic (PBT) chemicals and that are widely used with potential environmental release, such as dichloro-diphenyl-trichloroethane (DDT) or polychlorinated biphenyls (PCBs), have been removed from commerce. However, despite consistently failing ecological risk assessments, SGARs remain in use because of the demand for effective rodent-control options and the lack of safe and humane alternatives. Although new risk-mitigation measures for rodenticides are now in effect in some countries, the contamination and poisoning of nontarget wildlife are expected to continue. Here, we suggest options to further attenuate this problem
Unconventional Gravitational Excitation of a Schwarzschild Black Hole
Besides the well-known quasinormal modes, the gravitational spectrum of a
Schwarzschild black hole also has a continuum part on the negative imaginary
frequency axis. The latter is studied numerically for quadrupole waves. The
results show unexpected striking behavior near the algebraically special
frequency . This reveals a pair of unconventional damped modes very
near , confirmed analytically.Comment: REVTeX4, 4pp, 6 EPS figure files. N.B.: "Alec" is my first, and
"Maassen van den Brink" my family name. v2: better pole placement in Fig. 1.
v3: fixed Refs. [9,20]. v4: added context on "area quantum" research; trimmed
one Fig.; textual clarification
- …