12 research outputs found

    On Commutation Relations for Quons

    Full text link
    The model of generalized quons is described in a purely algebraic way. Commutation relations and corresponding consistency conditions for our generalized quons system are studied in terms of quantum Weyl algebras. Fock space representation and corresponding scalar product is also given.Comment: 17 pages in Latex, (corrected missprints in two formulas

    On crossed product of algebras

    Full text link
    The concept of a crossed tensor product of algebras is studied from a few points of views. Some related constructions are considered. Crossed enveloping algebras and their representations are discussed. Applications to the noncommutative geometry and particle systems with generalized statistics are indicated.Comment: 20 pages, latex2e (latexsym), no figures, accepted for publication in J. Math. Phys. 41 no10 (2000

    Ionic conductivity, viscosity, and self-diffusion coefficients of novel imidazole salts for lithium-ion battery electrolytes

    Get PDF
    Lithium-ion battery performance and longevity depend critically on the conducting salt utilized in the electrolyte. With new avenues for multifunctional integration and optimization of functional properties, conducting salts beyond lithium hexafluorophosphate (LiPF6_6) need to be studied. Herein we elucidate on viscosity, ionicity, anion self-diffusion and ionic conductivity through variation of the length of the perfluoroalkyl side chain present in the anions of the used lithium imidazole salts. Specifically, we study LiPF6_6 in comparison with lithium 4,5-dicyano-2-(trifluoromethyl)imidazolide (LiTDI), lithium 4,5-dicyano-2-(pentafluoroethyl)imidazolide (LiPDI), and lithium 4,5-dicyano-2-(n-heptafluoropropyl)imidazolide (LiHDI). We find that the ion mobility of LiPF6_6 depends the least on viscosity and its ionicity is the highest among the electrolytes investigated here. LiTDI shows the strongest correlation between ion mobility and viscosity and the lowest ionicity. LiPDI and LiHDI range between these two regarding their ionicity and the correlation of mobility with viscosity. The previously rarely studied anion self-diffusion coefficients exhibit a strong correlation with viscosity as it was to be expected. Differences between the LiTDI, LiPDI and LiHDI salts are minute

    On quantum weyl algebras and generalized quons

    No full text
    The model of generalized quons is described in an algebraic way as certain quasiparticle states with statistics determined by a commutation factor on an abelian group. Quantization is described in terms of quantum Weyl algebras. The corresponding commutation relations and scalar product are also given

    Particles in singular magnetic field

    No full text

    On the Sensitivity of the Ni-rich Layered Cathode Materials for Li-ion Batteries to the Different Calcination Conditions

    No full text
    Ni-rich layered oxides, i.e., LiNi0.6Mn0.2Co0.2O2 (NMC622) and LiNiO2 (LNO), were prepared using the two-step calcination procedure. The samples obtained at different calcination temperatures (750–950 °C for the NMC622 and 650–850 °C for the LNO cathode materials) were characterized using nitrogen physisorption, PXRD, SEM and DLS methods. The correlation of the calcination temperature, structural properties and electrochemical performance of the studied Ni-rich layered cathode materials was thoroughly investigated and discussed. It was determined that the optimal calcination temperature is dependent on the chemical composition of the cathode materials. With increasing nickel content, the optimal calcination temperature shifts towards lower temperatures. The NMC-900 calcined at 900 °C and the LNO-700 calcined at 700 °C showed the most favorable electrochemical performances. Despite their well-ordered structure, the materials calcined at higher temperatures were characterized by a stronger sintering effect, adverse particle growth, and higher Ni2+/Li+ cation mixing, thus deteriorating their electrochemical properties. The importance of a careful selection of the heat treatment (calcination) temperature for each individual cathode material was emphasized

    New Tailored Sodium Salts for Battery Applications

    No full text
    This article describes synthesis and basic electrochemical and structural properties of newly designed sodium salts for application in liquid nonaqueous sodium electrolytes. There has been two imidazole fluorine derivative sodium salts synthesized: sodium 4,5-dicyano-2-(trifluoromethyl)­imidazolate (NaTDI) and sodium 4,5-dicyano-2-(pentafluoroethyl)­imidazolate (NaPDI). The structure of the salts has been confirmed by means of Raman spectroscopy, nuclear magnetic resonance (<sup>13</sup>C NMR and <sup>19</sup>F NMR), X-ray diffraction, thermogravimetry (TGA), and differential scanning calorimetry (DSC). Electrochemical characterization included ionic conductivity measurements, dynamic viscosity, and electrochemical stability of solutions of the salts in propylene carbonate (PC) at different temperatures. Raman spectra of the electrolytes have been performed to carefully monitor the degree of ionic associations specially ion pairing tendencies

    Ionic conductivity, viscosity, and self-diffusion coefficients of novel imidazole salts for lithium-ion battery electrolytes

    No full text
    Lithium-ion battery performance and longevity depend critically on the conducting salt utilized in the electrolyte.With new avenues for multifunctional integration and optimization of functional properties, conducting saltsbeyond lithium hexafluorophosphate (LiPF6) need to be studied. Herein we elucidate on viscosity, ionicity,anion self-diffusion and ionic conductivity through variation of the length of the perfluoroalkyl side chainpresent in the anions of the used lithium imidazole salts. Specifically, we study LiPF6 in comparison withlithium 4,5-dicyano-2-(trifluoromethyl)imidazolide (LiTDI), lithium 4,5-dicyano-2-(pentafluoroethyl)imidazolide (LiPDI), and lithium 4,5-dicyano-2-(n-heptafluoropropyl)imidazolide (LiHDI). We find that the ionmobility of LiPF6 depends the least on viscosity and its ionicity is the highest among the electrolytesinvestigated here. LiTDI shows the strongest correlation between ion mobility and viscosity and the lowestionicity. LiPDI and LiHDI range between these two regarding their ionicity and the correlation of mobility withviscosity. The previously rarely studied anion self-diffusion coefficients exhibit a strong correlation withviscosity as it was to be expected. Differences between the LiTDI, LiPDI and LiHDI salts are minute
    corecore