125 research outputs found

    Reversible and Irreversible Effects of Temperature on Amelogenesis of Hamster Tooth Germs In Vitro

    Get PDF
    Hamster first hamster molar tooth germs in early secretory stage of amelogenesis were cultured for one day in vitro at 6°C, 22°C, 37°C or 45°C in the presence of 3H-proline, 45Ca and 32P-orthophosphate. Other explants were cultured without these labels and after culture examined by histology. The highest temperature tested was lethal to the explants, decreased total dry weight and rapidly increased total uptake of the radio-labelled mineral ions, probably merely due to physicochemical modification of the existing preculture minerals. Optimal synthesis and secretion of amelogenins were measured at physiological temperature (37°C). Effects of exposure to both temperatures below the physiological value were virtually reversible when explants were grown at physiological temperature (37°C) for another day. However, amelogenin secretion during this recovery period did not reach values as high as those found for the first day in explants initially grown at physiological temperature during the first day. We concluded from the four temperatures examined that the optimal temperature for enamel matrix deposition in vitro was 37°C. At this temperature enamel biosynthesis and its secretion are high. Lowering the temperature slows down the metabolism without any apparent harmful effect. Normal development of the tooth explants in vitro resumes when the culture temperature is restored to physiological levels (37°C). For temporary storage of tooth germ explants prior to any reimplantation, we therefore recommend a temperature of 6°C

    Verbalization of the Concept "Machine" in the Linguistic World Views of Russian and English Speakers

    Get PDF
    The paper focuses on the verbalization of the concept of "machine" in the Russian and English linguistic conceptions of the world. The study provides a comparative analysis of representation of the concept "machine" in two cultures and reveals ethnocultural specificity for Russian and English speakers. The significance of the work is due to the interest of modern linguistics and the Intercultural Communication Theory in the process of encoding a national mentality in the form of linguistic units. The authors describe ethnoculutural similarities and differences in the verbalization of the concept “machine” in Russian and English

    Micro-PIXE (Proton-Induced X-Ray Emission) Study of the Effects of Fluoride on Mineral Distribution Patterns in Enamel and Dentin in the Developing Hamster Tooth Germ

    Get PDF
    Micro-PIXE (proton-induced X-ray emission) analysis was performed on unfixed and anhydrously prepared sections from developing enamel and dentin from hamsters injected with a single dose of 20 mg NaF /kg body weight. Fluoride, apart from inducing the formation of the characteristic paired response in the enamel (i.e., a hyper- followed by a hypomineralized band in the secretory enamel), also induces the formation of sub-ameloblastic cystic lesions under the transitional and early secretory enamel accompanied by relatively intense hypermineralization of the underlying cystic enamel surface. These cystic lesions, however, were only found to be associated with certain isolated populations of these cells. In addition, these lesions were restricted to the smooth surfaces of the tooth germ only. Cystic lesions such as those seen under the transitional and early secretory ameloblasts were not observed under the fully secretory or maturation stage ameloblasts. Why fluoride induces the formation of cystic lesions in some ameloblast populations while other cells in the same stage of development apparently remain unaffected, is a matter which needs further investigation

    Universality of Frequency and Field Scaling of the Conductivity Measured by Ac-Susceptibility of a Ybco-Film

    Full text link
    Utilizing a novel and exact inversion scheme, we determine the complex linear conductivity σ(ω)\sigma (\omega ) from the linear magnetic ac-susceptibility which has been measured from 3\,mHz to 50\,MHz in fields between 0.4\,T and 4\,T applied parallel to the c-axis of a 250\,nm thin disk. The frequency derivative of the phase σ/σ\sigma ''/\sigma ' and the dynamical scaling of σ(ω)\sigma (\omega) above and below Tg(B)T_g(B) provide clear evidence for a continuous phase transition at TgT_g to a generic superconducting state. Based on the vortex-glass scaling model, the resulting critical exponents ν\nu and zz are close to those frequently obtained on films by other means and associated with an 'isotropic' vortex glass. The field effect on σ(ω)\sigma(\omega) can be related to the increase of the glass coherence length, ξgB\xi_g\sim B.Comment: 8 pages (5 figures upon request), revtex 3.0, APK.94.01.0

    Is there a vortex-glass transition in high-temperature superconductors?

    Full text link
    We show that DC voltage versus current measurements of a YBCO micro-bridge in a magnetic field can be collapsed onto scaling functions proposed by Fisher, Fisher, and Huse, as is widely reported in the literature. We find, however, that good data collapse is achieved for a wide range of critical exponents and temperatures. These results strongly suggest that agreement with scaling alone does not prove the existence of a phase transition. We propose a criterion to determine if the data collapse is valid, and thus if a phase transition occurs. To our knowledge, none of the data reported in the literature meet our criterion.Comment: 4 pages, 4 figure

    Collective pinning of a frozen vortex liquid in ultrathin superconducting YBa_2Cu_3O_7 films

    Full text link
    The linear dynamic response of the two-dimensional (2D) vortex medium in ultrathin YBa_2Cu_3O_7 films was studied by measuring their ac sheet impedance Z over a broad range of frequencies \omega. With decreasing temperature the dissipative component of Z exhibits, at a temperature T*(\omega) well above the melting temperature of a 2D vortex crystal, a crossover from a thermally activated regime involving single vortices to a regime where the response has features consistent with a description in terms of a collectively pinned vortex manifold. This suggests the idea of a vortex liquid which, below T*(\omega), appears to be frozen at the time scales 1/\omega of the experiments.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Vortex Motion Noise in Micrometre-Sized Thin Films of the Amorphous Nb0.7Ge0.3 Weak-Pinning Superconductor

    Get PDF
    We report high-resolution measurements of voltage (V) noise in the mixed state of micrometre-sized thin films of amorphous Nb0.7Ge0.3, which is a good representative of weak-pinning superconductors. There is a remarkable difference between the noise below and above the irreversibility field Birr. Below Birr, in the presence of measurable pinning, the noise at small applied currents resembles shot noise, and in the regime of flux flow at larger currents decreases with increasing voltage due to a progressive ordering of the vortex motion. At magnetic fields B between Birr and the upper critical field Bc2 flux flow is present already at vanishingly small currents. In this regime the noise scales with (1-B/Bc2)^2 V^2 and has a frequency (f) spectrum of 1/f type. We interpret this noise in terms of the properties of strongly driven depinned vortex systems at high vortex density.Comment: 8 pages, 5 figures, version accepted for publication in PR

    Finite-temperature resistive transition in the two-dimensional XY gauge glass model

    Full text link
    We investigate numerically the resistive transition in the two-dimensional XY gauge glass model. The resistively-shunted junction dynamics subject to the fluctuating twist boundary condition is used and the linear resistances in the absence of an external current at various system sizes are computed. Through the use of the standard finite-size scaling method, the finite temperature resistive transition is found at kBTc=0.22(2)k_BT_c = 0.22(2) (in units of the Josephson coupling strength) with dynamic critical exponent z=2.0(1)z = 2.0(1) and the static exponent ν=1.2(2)\nu = 1.2(2), in contrast to widely believed expectation of the zero-temperature transition. Comparisons with existing experiments and simulations are also made.Comment: 5 pages in two columns, 4 eps figures included, to appear in PR
    corecore