3 research outputs found
Comprehensive Analysis of 5-Aminolevulinic Acid Dehydrogenase (ALAD) Variants and Renal Cell Carcinoma Risk among Individuals Exposed to Lead
BACKGROUND: Epidemiologic studies are reporting associations between lead exposure and human cancers. A polymorphism in the 5-aminolevulinic acid dehydratase (ALAD) gene affects lead toxicokinetics and may modify the adverse effects of lead. METHODS: The objective of this study was to evaluate single-nucleotide polymorphisms (SNPs) tagging the ALAD region among renal cancer cases and controls to determine whether genetic variation alters the relationship between lead and renal cancer. Occupational exposure to lead and risk of cancer was examined in a case-control study of renal cell carcinoma (RCC). Comprehensive analysis of variation across the ALAD gene was assessed using a tagging SNP approach among 987 cases and 1298 controls. Occupational lead exposure was estimated using questionnaire-based exposure assessment and expert review. Odds ratios (OR) and 95% confidence intervals (CI) were calculated using logistic regression. RESULTS: The adjusted risk associated with the ALAD variant rs8177796(CT/TT) was increased (OR = 1.35, 95%CI = 1.05-1.73, p-value = 0.02) when compared to the major allele, regardless of lead exposure. Joint effects of lead and ALAD rs2761016 suggest an increased RCC risk for the homozygous wild-type and heterozygous alleles ((GG)OR = 2.68, 95%CI = 1.17-6.12, p = 0.01; (GA)OR = 1.79, 95%CI = 1.06-3.04 with an interaction approaching significance (p(int) = 0.06). No significant modification in RCC risk was observed for the functional variant rs1800435(K68N). Haplotype analysis identified a region associated with risk supporting tagging SNP results. CONCLUSION: A common genetic variation in ALAD may alter the risk of RCC overall, and among individuals occupationally exposed to lead. Further work in larger exposed populations is warranted to determine if ALAD modifies RCC risk associated with lead exposure
Variants in blood pressure genes and the risk of renal cell carcinoma
Hypertension is a known risk factor for renal cell carcinoma (RCC), although the underlying biological mechanisms of its action are unknown. To clarify the role of hypertension in RCC, we examined the risk of RCC in relation to 142 single-nucleotide polymorphisms (SNPs) in eight genes having a role in blood pressure control. We analyzed 777 incident and histologically confirmed RCC cases and 1035 controls who completed an in-person interview as part of a multi-center, hospital-based case–control study in Central Europe. Genotyping was conducted with an Illumina® GoldenGate® Oligo Pool All assay using germ line DNA. Of the eight genes examined, AGT (angiotensinogen) was most strongly associated with RCC (minimum P-value permutation test = 0.02). Of the 17 AGT tagging SNPs considered, associations were strongest for rs1326889 [odds ratio (OR) = 1.35, 95% confidence interval (CI) = 1.15–1.58] and rs2493137 (OR = 1.31, 95% CI = 1.12–1.54), which are located in the promoter. Stratified analysis revealed that the effects of the AGT SNPs were statistically significant in participants with hypertension or high body mass index (BMI) (≥25 kg/m2), but not in subjects without hypertension and with a normal BMI (<25 kg/m2). Also, haplotypes with risk-conferring alleles of markers located in the promoter and intron 1 regions of AGT were significantly associated with RCC compared with the common haplotype in subjects with hypertension or high BMI (global P = 0.003). Our findings suggest that common genetic variants of AGT, particularly those in the promoter, increase RCC risk among subjects who are hypertensive or overweight