37 research outputs found

    Field theoretical analysis of adsorption of polymer chains at surfaces: Critical exponents and Scaling

    Full text link
    The process of adsorption on a planar repulsive, "marginal" and attractive wall of long-flexible polymer chains with excluded volume interactions is investigated. The performed scaling analysis is based on formal analogy between the polymer adsorption problem and the equivalent problem of critical phenomena in the semi-infinite ∣ϕ∣4|\phi|^4 n-vector model (in the limit n→0n\to 0) with a planar boundary. The whole set of surface critical exponents characterizing the process of adsorption of long-flexible polymer chains at the surface is obtained. The polymer linear dimensions parallel and perpendicular to the surface and the corresponding partition functions as well as the behavior of monomer density profiles and the fraction of adsorbed monomers at the surface and in the interior are studied on the basis of renormalization group field theoretical approach directly in d=3 dimensions up to two-loop order for the semi-infinite ∣ϕ∣4|\phi|^4 n-vector model. The obtained field- theoretical results at fixed dimensions d=3 are in good agreement with recent Monte Carlo calculations. Besides, we have performed the scaling analysis of center-adsorbed star polymer chains with ff arms of the same length and we have obtained the set of critical exponents for such system at fixed d=3 dimensions up to two-loop order.Comment: 22 pages, 12 figures, 4 table

    Morphological characteristics of motor neurons do not determine their relative susceptibility to degeneration in a mouse model of severe spinal muscular atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality, resulting primarily from the degeneration and loss of lower motor neurons. Studies using mouse models of SMA have revealed widespread heterogeneity in the susceptibility of individual motor neurons to neurodegeneration, but the underlying reasons remain unclear. Data from related motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), suggest that morphological properties of motor neurons may regulate susceptibility: in ALS larger motor units innervating fast-twitch muscles degenerate first. We therefore set out to determine whether intrinsic morphological characteristics of motor neurons influenced their relative vulnerability to SMA. Motor neuron vulnerability was mapped across 10 muscle groups in SMA mice. Neither the position of the muscle in the body, nor the fibre type of the muscle innervated, influenced susceptibility. Morphological properties of vulnerable and disease-resistant motor neurons were then determined from single motor units reconstructed in Thy.1-YFP-H mice. None of the parameters we investigated in healthy young adult mice - including motor unit size, motor unit arbor length, branching patterns, motor endplate size, developmental pruning and numbers of terminal Schwann cells at neuromuscular junctions - correlated with vulnerability. We conclude that morphological characteristics of motor neurons are not a major determinant of disease-susceptibility in SMA, in stark contrast to related forms of motor neuron disease such as ALS. This suggests that subtle molecular differences between motor neurons, or extrinsic factors arising from other cell types, are more likely to determine relative susceptibility in SMA

    Magnesium administration provokes motor unit survival, after sciatic nerve injury in neonatal rats

    Get PDF
    BACKGROUND: We examined the time course of the functional alterations in two types of muscles following sciatic nerve crush in neonatal rats and the neuroprotective effect of Mg(2+). METHODS: The nerve crush was performed on the 2(nd )postnatal day. MgSO(4)*7H(2)O was administered daily for two weeks. Animals were examined for the contractile properties and for the number of motor units of extensor digitorum longus and soleus muscles at three postnatal stages and adulthood. Four experimental groups were included in this study: i) controls, ii) axotomized rats, iii) magnesium treated controls and iv) axotomized and Mg(2+)-treated rats. RESULTS: Axotomy resulted in 20% MU survival in EDL and 50% in soleus. In contrast, magnesium treatment resulted in a significant motor unit survival (40% survival in EDL and 80% in soleus). The neuroprotective effects of Mg(2+ )were evident immediately after the Mg(2+)-treatment. Immature EDL and soleus muscles were slow and fatigueable. Soleus gradually became fatigue resistant, whereas, after axotomy, soleus remained fatigueable up to adulthood. EDL gradually became fastcontracting. Tetanic contraction in axotomized EDL was just 3,3% of the control side, compared to 15,2% in Mg(2+)-treated adult rats. The same parameter for axotomized soleus was 12% compared to 97% in Mg(2+)-treated adult rats. CONCLUSIONS: These results demonstrate that motoneuron death occurs mostly within two weeks of axotomy. Magnesium administration rescues motoneurons and increases the number of motor units surviving into adulthood. Fast and slow muscles respond differently to axotomy and to subsequent Mg(2+ )treatment in vivo

    A Hidden Markov Model for Analysis of Frontline Veterinary Data for Emerging Zoonotic Disease Surveillance

    Get PDF
    Surveillance systems tracking health patterns in animals have potential for early warning of infectious disease in humans, yet there are many challenges that remain before this can be realized. Specifically, there remains the challenge of detecting early warning signals for diseases that are not known or are not part of routine surveillance for named diseases. This paper reports on the development of a hidden Markov model for analysis of frontline veterinary sentinel surveillance data from Sri Lanka. Field veterinarians collected data on syndromes and diagnoses using mobile phones. A model for submission patterns accounts for both sentinel-related and disease-related variability. Models for commonly reported cattle diagnoses were estimated separately. Region-specific weekly average prevalence was estimated for each diagnoses and partitioned into normal and abnormal periods. Visualization of state probabilities was used to indicate areas and times of unusual disease prevalence. The analysis suggests that hidden Markov modelling is a useful approach for surveillance datasets from novel populations and/or having little historical baselines

    Passive Q-switching and mode-locking for the generation of nanosecond to femtosecond pulses

    Full text link

    Sulf1 and Sulf2 expression in the nervous system and its role in limiting neurite outgrowth in vitro

    No full text
    Sulf1 and Sulf2 are endosulfatases that cleave 6-O-sulphate groups from Heparan Sulphate Proteoglycans (HSPGs). Sulfation levels of HSPGs are critical for their role in modulating the activity of various growth factor receptors. Sulf1 and Sulf2 mRNAs were found to be widely expressed in the rodent nervous system and their full-length proteins were found in many types of neuronal perikarya and axons in the cerebral cortex, cerebellum, spinal cord and dorsal root ganglia (DRG) of adult rats. Sulf1/2 were also strongly expressed by cultured DRG neurons. To determine if blocking Sulf1 or Sulf2 activity affected neurite outgrowth in vitro, cultured DRG neurons were treated with neutralising antibodies to Sulf1 or Sulf2. Blocking Sulf1 and Sulf2 activity did not affect neurite outgrowth from cultured DRG neurons grown on a laminin/polylysine substrate but ameliorated the inhibitory effects of chondroitin sulphate proteoglycans (CSPGs) on neurite outgrowth. Blocking epidermal growth factor receptor (ErbB1) activity also improved neurite outgrowth in the presence of CSPGs, but the effects of ErbB1 antagonists and blocking SULFs were not additive. It is proposed that Sulf1, Sulf2 and ErbB1 are involved in the signalling pathway from CSPGs that leads to inhibition of neurite outgrowth and may regulate structural plasticity and regeneration in the nervous system

    Research of Genetic Polymorphism Species Linumu sitatissimum L. on a Basis a RAPD-Method

    No full text
    The goal of this investigation was the interpretation of genetic polymorphism in flax using the random amplified polymorphic DNA (RAPD-PCR) technique in relation to genealogical information and eco geographic origin of the accessions. Protein markers have been successfully applied for identification of ecotypes of cultivated plants and for cultivar identification and registration. However, for intraspecific differentiation in flax effective protein markers have not been found. The DNA markers developed during the recent decades proved to be more efficient in detecting polymorphism in flax. The plant material were 287 accessions from the flax collection at the All-Russian Flax Research Institute (VNIIL) belonging to different botanical and eco-geographical groups based on the classification of the species Linumu sitatissimum L. On the basis of a molecular estimation the gene pool offlax it can be assumed that the fiber flax from northern continental Russia is not exclusively of Indo-afghan origin as suggested by Sinskaja (1959), but also has genetic roots in flax from Kolchidian. Essential genetic similarity between cultivar of fiber flax from Russia and other the European countries is established. Results of a generality of an origin of fiber flax cultivar from Russia are confirmed also with the analysis of their genealogy. Essential genetic polymorphism of linseed flax is shown. The distinctness of linseed and fiber flax in their genetic constitution as revealed by the RAPD analysis is of strategic importance in preservation of the genetic diversity and for efficient use of the flax gene pool in breeding

    Table-top water-window soft X-ray microscope using a Z-pinching capillary discharge source

    No full text
    The development and demonstration of a table-top transmission soft X-ray (SXR) microscope, using a laboratory incoherent capillary discharge source has been carried out. This Z-pinching capillary discharge water-window SXR source, is a first of its kind to be used for high spatial resolution microscopy at λ = 2.88 nm (430 eV) . A grazing incidence ellipsoidal condenser mirror is used for focusing of the SXR radiation at the sample plane. The Fresnel zone plate objective lens is used for imaging of the sample onto a back-illuminated (BI) CCD camera. The achieved half-pitch spatial resolution of the microscope approaches 100 nm, as demonstrated by the knife-edge test. Details about the source, and the construction of the microscope are presented and discussed. Additionally, the SXR images of various samples, proving applicability of such microscope for observation of objects in the nanoscale, are shown
    corecore