75 research outputs found
Examining the Executioners, Influenza Associated Secondary Bacterial Pneumonia
Influenza infections typically present mild to moderate morbidities in immunocompetent host and are often resolved within 14Â days of infection onset. Death from influenza infection alone is uncommon; however, antecedent influenza infection often leads to an increased susceptibility to secondary bacterial pneumonia. Bacterial pneumonia following viral infection exhibits mortality rates greater than 10-fold of those of influenza alone. Furthermore, bacterial pneumonia has been identified as the major contributor to mortality during each of the previous four influenza pandemics. Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Streptococcus pyogenes are the most prevalent participants in this pathology. Of note, these lung pathogens are frequently found as commensals of the upper respiratory tract. Herein we describe influenza-induced host-changes that lead to increased susceptibility to bacterial pneumonia, review virulence strategies employed by the most prevalent secondary bacterial pneumonia species, and highlight recent findings of bacterial sensing and responding to the influenza infected environment
Transcription of the Streptococcus Pyogenes Hyaluronic Acid Capsule Biosynthesis Operon is Regulated by Previously Unknown Upstream Elements
The important human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]) produces a hyaluronic acid (HA) capsule that plays critical roles in immune evasion. Previous studies showed that the hasABC operon encoding the capsule biosynthesis enzymes is under the control of a single promoter, P1, which is negatively regulated by the two-component regulatory system CovR/S. In this work, we characterize the sequence upstream of P1 and identify a novel regulatory region controlling transcription of the capsule biosynthesis operon in the M1 serotype strain MGAS2221. This region consists of a promoter, P2, which initiates transcription of a novel small RNA, HasS, an intrinsic transcriptional terminator that inefficiently terminates HasS, permitting read-through transcription of hasABC, and a putative promoter which lies upstream of P2. Electrophoretic mobility shift assays, quantitative reverse transcription-PCR, and transcriptional reporter data identified CovR as a negative regulator of P2. We found that the P1 and P2 promoters are completely repressed by CovR, and capsule expression is regulated by the putative promoter upstream of P2. Deletion of hasS or of the terminator eliminates CovR-binding sequences, relieving repression and increasing read-through, hasA transcription, and capsule production. Sequence analysis of 44 GAS genomes revealed a high level of polymorphism in the HasS sequence region. Most of the HasS variations were located in the terminator sequences, suggesting that this region is under strong selective pressure. We discovered that the terminator deletion mutant is highly resistant to neutrophil-mediated killing and is significantly more virulent in a mouse model of GAS invasive disease than the wild-type strain. Together, these results are consistent with the naturally occurring mutations in this region modulating GAS virulence
Nonpathological Inflammation Drives the Development of an Avian Flight Adaptation
The development of modern birds provides a window into the biology of their dinosaur ancestors. We investigated avian postnatal development and found that sterile inflammation drives formation of the pygostyle, a compound structure resulting from bone fusion in the tail. Inflammation is generally induced by compromised tissue integrity, but here is involved in normal bone development. Transcriptome profiling and immuno/histochemistry reveal a robust inflammatory response that resembles bone fracture healing. The data suggest the involvement of necroptosis and multiple immune cell types, notably heterophils (the avian equivalent of neutrophils). Additionally, nucleus pulposus structures, heretofore unknown in birds, are involved in disc remodeling. Anti-inflammatory corticosteroid treatment inhibited vertebral fusion, substantiating the crucial role of inflammation in the ankylosis process. This study shows that inflammation can drive developmental skeletogenesis, in this case leading to the formation of a flight-adapted tail structure on the evolutionary path to modern avians
18-Beta-Glycyrrhetinic Acid Causes Increased Pigment Production and Decreased Adherence in Methicillin Resistant Staphylococcus Aureus Biofilms
Infections caused by Methicillin Resistant Staphylococcus aureus (MRSA) are an ever growing concern in the health care field. While MRSA is most known for its resistance to beta-lactams (i.e. penicillin), it has also acquired resistance to a number of other antibiotics. MRSA plays a major role in chronic wounds due to its ability to form a biofilm, resulting in severe infections. Biofilms are naturally more resistant to antibiotics than planktonic cells which can be due to their extracellular polymeric substance and slow growing nature, as well as metabolic differences. This has resulted in biofilms becoming a major focus in the biomedical field. As MRSA rapidly acquires resistance to currently available antibiotics, there is an urgent need to develop novel antimicrobials. 18?-Glycyrrhetinic acid (GRA) is a compound isolated from Glycyrrhiza glabra and has been shown to be an effective antimicrobial against Staphylococcal planktonic cells; however, investigations on biofilm activity appear to be lacking. Our studies show GRA to have minimal to no effect on biofilm bacterial counts; however, post-treatment observations included an increase in yellow pigment and decreased adherence of biofilms. S. aureus pigments play an important role in virulence, including oxidative stress that may be introduced by antimicrobials like GRA. Crystal violet staining of GRA treated biofilms showed a quantified reduction in adherence compared to controls. This suggests that GRA may cause biofilm dispersal and therefore increased susceptibility to current antimicrobials. 1H NMR metabolomics is being conducted to investigate these results and other metabolic changes in GRA treated biofilms
Nuclease Modulates Biofilm Formation in Community-Associated Methicillin-Resistant Staphylococcus aureus
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is an emerging contributor to biofilm-related infections. We recently reported that strains lacking sigma factor B (sigB) in the USA300 lineage of CA-MRSA are unable to develop a biofilm. Interestingly, when spent media from a USA300 sigB mutant was incubated with other S. aureus strains, biofilm formation was inhibited. Following fractionation and mass spectrometry analysis, the major anti-biofilm factor identified in the spent media was secreted thermonuclease (Nuc). Considering reports that extracellular DNA (eDNA) is an important component of the biofilm matrix, we investigated the regulation and role of Nuc in USA300. The expression of the nuc gene was increased in a sigB mutant, repressed by glucose supplementation, and was unaffected by the agr quorum-sensing system. A FRET assay for Nuc activity was developed and confirmed the regulatory results. A USA300 nuc mutant was constructed and displayed an enhanced biofilm-forming capacity, and the nuc mutant also accumulated more high molecular weight eDNA than the WT and regulatory mutant strains. Inactivation of nuc in the USA300 sigB mutant background partially repaired the sigB biofilm-negative phenotype, suggesting that nuc expression contributes to the inability of the mutant to form biofilm. To test the generality of the nuc mutant biofilm phenotypes, the mutation was introduced into other S. aureus genetic backgrounds and similar increases in biofilm formation were observed. Finally, using multiple S. aureus strains and regulatory mutants, an inverse correlation between Nuc activity and biofilm formation was demonstrated. Altogether, our findings confirm the important role for eDNA in the S. aureus biofilm matrix and indicates Nuc is a regulator of biofilm formation
Aspartic Acid Residue 51 of SaeR Is Essential for Staphylococcus aureus Virulence
Staphylococcus aureus is a common Gram-positive bacteria that is a major cause of human morbidity and mortality. The SaeR/S two-component sensory system of S. aureus is important for virulence gene transcription and pathogenesis. However, the influence of SaeR phosphorylation on virulence gene transcription is not clear. To determine the importance of potential SaeR phosphorylation sites for S. aureus virulence, we generated genomic alanine substitutions at conserved aspartic acid residues in the receiver domain of the SaeR response regulator in clinically significant S. aureus pulsed-field gel electrophoresis (PFGE) type USA300. Transcriptional analysis demonstrated a dramatic reduction in the transcript abundance of various toxins, adhesins, and immunomodulatory proteins for SaeR with an aspartic acid to alanine substitution at residue 51. These findings corresponded to a significant decrease in cytotoxicity against human erythrocytes and polymorphonuclear leukocytes, the ability to block human myeloperoxidase activity, and pathogenesis during murine soft-tissue infection. Analysis of SaeR sequences from over 8,000 draft S. aureus genomes revealed that aspartic acid residue 51 is 100% conserved. Collectively, these results demonstrate that aspartic acid residue 51 of SaeR is essential for S. aureus virulence and underscore a conserved target for novel antimicrobial strategies that treat infection caused by this pathogen
Alpha-Toxin Induces Programmed Cell Death of Human T cells, B cells, and Monocytes during USA300 Infection
This investigation examines the influence of alpha-toxin (Hla) during USA300 infection of human leukocytes. Survival of an USA300 isogenic deletion mutant of hla (USA300Δhla) in human blood was comparable to the parental wild-type strain and polymorphonuclear leukocyte (PMN) plasma membrane permeability caused by USA300 did not require Hla. Flow cytometry analysis of peripheral blood mononuclear cells (PBMCs) following infection by USA300, USA300Δhla, and USA300Δhla transformed with a plasmid over-expressing Hla (USA300Δhla Comp) demonstrated this toxin plays a significant role inducing plasma membrane permeability of CD14+, CD3+, and CD19+ PBMCs. Rapid plasma membrane permeability independent of Hla was observed for PMNs, CD14+ and CD19+ PBMCs following intoxication with USA300 supernatant while the majority of CD3+ PBMC plasma membrane permeability induced by USA300 required Hla. Addition of recombinant Hla to USA300Δhla supernatant rescued CD3+ and CD19+ PBMC plasma membrane permeability generated by USA300 supernatant. An observed delay in plasma membrane permeability caused by Hla in conjunction with Annexin V binding and ApoBrdU Tunel assays examining PBMCs intoxicated with recombinant Hla or infected with USA300, USA300Δhla, USA300Δhla Comp, and USA300ΔsaeR/S suggest Hla induces programmed cell death of monocytes, B cells, and T cells that results in plasma membrane permeability. Together these findings underscore the importance of Hla during S. aureus infection of human tissue and specifically demonstrate Hla activity during USA300 infection triggers programmed cell death of human monocytes, T cells and B cells that leads to plasma membrane permeability
The Staphylococcus aureus superantigen SElX is a bifunctional toxin that inhibits neutrophil function:SElX Inhibits Neutrophil Function
Bacterial superantigens (SAgs) cause Vβ-dependent T-cell proliferation leading to immune dysregulation associated with the pathogenesis of life-threatening infections such as toxic shock syndrome, and necrotizing pneumonia. Previously, we demonstrated that staphylococcal enterotoxin-like toxin X (SElX) from Staphylococcus aureus is a classical superantigen that exhibits T-cell activation in a Vβ-specific manner, and contributes to the pathogenesis of necrotizing pneumonia. Here, we discovered that SElX can also bind to neutrophils from human and other mammalian species and disrupt IgG-mediated phagocytosis. Site-directed mutagenesis of the conserved sialic acid-binding motif of SElX abolished neutrophil binding and phagocytic killing, and revealed multiple glycosylated neutrophil receptors for SElX binding. Furthermore, the neutrophil binding-deficient mutant of SElX retained its capacity for T-cell activation demonstrating that SElX exhibits mechanistically independent activities on distinct cell populations associated with acquired and innate immunity, respectively. Finally, we demonstrated that the neutrophil-binding activity rather than superantigenicity is responsible for the SElX-dependent virulence observed in a necrotizing pneumonia rabbit model of infection. Taken together, we report the first example of a SAg, that can manipulate both the innate and adaptive arms of the human immune system during S. aureus pathogenesis
Formyl Met-Leu-Phe-Stimulated FPR1 Phosphorylation in Plate-Adherent Human Neutrophils: Enhanced Proteolysis but Lack of Inhibition by Platelet-Activating Factor
N-formyl-Met-Leu-Phe (fMLF) is a model PAMP/DAMP driving human PMN to sites of injury/infection utilizing the GPCR, FPR1. We examined a microtiter plate format for measurement of FPR1 phosphorylation in adherent PMN at high densities and found that a new phosphosensitive FPR1 fragment, 25K-FPR1, accumulates in SDS-PAGE extracts. 25K-FPR1 is fully inhibited by diisopropylfluorophosphate PMN pretreatment but is not physiologic, as its formation failed to be significantly perturbed by ATP depletion, time and temperature of adherence, or adherence mechanism. 25K-FPR1 was minimized by extracting fMLF-exposed PMN in lithium dodecylsulfate at 4°C prior to reduction/alkylation. After exposure of adherent PMN to a 5 log range of PAF before or after fMLF, unlike in suspension PMN, no inhibition of fMLF-induced FPR1 phosphorylation was observed. However, PAF induced the release of 40% of PMN lactate dehydrogenase, implying significant cell lysis. We infer that PAF-induced inhibition of fMLF-dependent FPR1 phosphorylation observed in suspension PMN does not occur in the unlysed adherent PMN. We speculate that although the conditions of the assay may induce PAF-stimulated necrosis, the cell densities on the plates may approach levels observed in inflamed tissues and provide for an explanation of PAF’s divergent effects on FPR1 phosphorylation as well as PMN function
The SaeR/S Gene Regulatory System Induces a Pro- Inflammatory Cytokine Response during Staphylococcus aureus Infection
Community-associated methicillin-resistant Staphylococcus aureus accounts for a large portion of the increased staphylococcal disease incidence and can cause illness ranging from mild skin infections to rapidly fatal sepsis syndromes. Currently, we have limited understanding of S. aureus-derived mechanisms contributing to bacterial pathogenesis and host inflammation during staphylococcal disease. Herein, we characterize an influential role for the saeR/S two-component gene regulatory system in mediating cytokine induction using mouse models of S. aureus pathogenesis. Invasive S. aureus infection induced the production of localized and systemic pro-inflammatory cytokines, including tumor necrosis factor alpha (TNF-a), interferon gamma (IFN-c), interleukin (IL)-6 and IL-2. In contrast, mice infected with an isogenic saeR/S deletion mutant demonstrated significantly reduced pro-inflammatory cytokine levels. Additionally, secreted factors influenced by saeR/S elicited pro-inflammatory cytokines in human blood ex vivo. Our study further demonstrated robust saeR/S-mediated IFN-cproduction during both invasive and subcutaneous skin infections. Results also indicated a critical role for saeR/S in promoting bacterial survival and enhancing host mortality during S. aureus peritonitis. Taken together, this study provides insight into specific mechanisms used by S. aureus during staphylococcal disease and characterizes
- …