414 research outputs found

    Interplane and intraplane heat transport in quasi two-dimensional nodal superconductors

    Get PDF
    We analyze the behavior of the thermal conductivity in quasi-two dimensional superconductors with line nodes. Motivated by measurements of the anisotropy between the interplane and intraplane thermal transport in CeIrIn_5 we show that a simple model of the open Fermi surface with vertical line nodes is insufficient to describe the data. We propose two possible extensions of the model taking into account a) additional modulation of the gap along the axial direction of the open Fermi surface; and b) dependence of the interplane tunneling on the direction of the in-plane momentum. We discuss the temperature dependence of the thermal conductivity anisotropy and its low T limit in these two models and compare the results with a model with a horizontal line of nodes (``hybrid gap''). We discuss possible relevance of each model for the symmetry of the order parameter in CeIrIn_5, and suggest further experiments aimed at clarifying the shape of the superconducting gap.Comment: 14pages, 12 figure

    Nodal structure of quasi-2D superconductors probed by magnetic field

    Get PDF
    We consider a quasi two-dimensional superconductor with line nodes in an in-plane magnetic field, and compute the dependence of the specific heat, CC, and the in-plane heat conductivity, κ\kappa, on the angle between the field and the nodal direction in the vortex state. We use a variation of the microscopic Brandt-Pesch-Tewordt method that accounts for the scattering of quasiparticles off vortices, and analyze the signature of the nodes in CC and κ\kappa. At low to moderate fields the specific heat anisotropy changes sign with increasing temperature. Comparison with measurements of CC and κ\kappa in CeCoIn5_5 resolves the contradiction between the two in favor of the dx2y2d_{x^2-y^2} gap.Comment: 5 pages, 3 figure

    Microscopic evidence for field-induced magnetism in CeCoIn5_5

    Full text link
    We present NMR data in the normal and superconducting states of CeCoIn5_5 for fields close to Hc2(0)=11.8H_{\rm c2}(0)=11.8 T in the abab plane. Recent experiments identified a first-order transition from the normal to superconducting state for H>10.5H> 10.5 T, and a new thermodynamic phase below 290 mK within the superconducting state. We find that the Knight shifts of the In(1), In(2) and the Co are discontinuous across the first-order transition and the magnetic linewidths increase dramatically. The broadening differs for the three sites, unlike the expectation for an Abrikosov vortex lattice, and suggests the presence of static spin moments in the vortex cores. In the low-temperature and high-field phase the broad NMR lineshapes suggest ordered local moments, rather than a long wavelength quasiparticle spin density modulation expected for an FFLO phase.Comment: 4 pages, 4 figures. to appear in Phys. Rev. Let

    Effect of annealing on the specific heat of Ba(Fe1-xCox)2As2

    Get PDF
    We report on the effect of annealing on the temperature and field dependencies of the low temperature specific heat of the electron-doped Ba(Fe1x_{1-x}Cox_{x})2_{2}As2_{2} for under-(x = 0.045), optimal- (x = 0.08) and over-doped (x = 0.105 and 0.14) regimes. We observed that annealing significantly improves some superconducting characteristics in Ba(Fe1x_{1-x}Cox_{x})2_{2}As2_{2}. It considerably increases TcT_{c}, decreases γ0\gamma_{0} in the superconducting state and suppresses the Schottky-like contribution at very low temperatures. The improved sample quality allows for a better identification of the superconducting gap structure of these materials. We examine the effects of doping and annealing within a self-consistent framework for an extended s-wave pairing scenario. At optimal doping our data indicates the sample is fully gapped, while for both under and overdoped samples significant low-energy excitations possibly consistent with a nodal structure remain. The difference of sample quality offers a natural explanation for the variation in low temperature power laws observed by many techniques.Comment: 9 pages: added references, two figures and supplementary information; Accepted to Physical Review B (Jan 10, 2010

    Nonuniform Spin Triplet Superconductivity due to Antisymmetric Spin-Orbit Coupling in Noncentrosymmetric Superconductor CePt3_3Si

    Full text link
    We show that the nonuniform state (Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state) of the spin triplet superconductivity in noncentrosymmetric systems is stabilized by antisymmetric spin-orbit coupling even if the magnetic field is absent. The transition temperature of the spin triplet superconductivity is reduced by the antisymmetric spin-orbit coupling in general. This pair breaking effect is shown to be similar to the Pauli pair breaking effect due to magnetic field for the spin singlet superconductivity, in which FFLO state is stabilized near the Pauli limit (or Chandrasekhar-Clogston limit) of external magnetic field. Since there are gapless excitations in nonuniform superconducting state, some physical quantities such as specific heat and penetration depth should obey the power low temperature-dependences. We discuss the possibility of the realization of nonuniform state in CePt3_3Si.Comment: 8 pages, 6 figure

    Manipulation and removal of defects in spontaneous optical patterns

    Full text link
    Defects play an important role in a number of fields dealing with ordered structures. They are often described in terms of their topology, mutual interaction and their statistical characteristics. We demonstrate theoretically and experimentally the possibility of an active manipulation and removal of defects. We focus on the spontaneous formation of two-dimensional spatial structures in a nonlinear optical system, a liquid crystal light valve under single optical feedback. With increasing distance from threshold, the spontaneously formed hexagonal pattern becomes disordered and contains several defects. A scheme based on Fourier filtering allows us to remove defects and to restore spatial order. Starting without control, the controlled area is progressively expanded, such that defects are swept out of the active area.Comment: 4 pages, 4 figure

    Theory of Fulde-Ferrell-Larkin-Ovchinnikov state of superconductors with and without inversion symmetry: Hubbard model approach

    Full text link
    We study Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state of superconductors with and without inversion symmetry based on the Hubbard model on the square lattice near half-filling, using the random phase approximation. We show that center of mass momentum QQ tends to be parallel to xx- or y-axis in the presence of inversion symmetry, while QQ vector is likely to be perpendicular to the magnetic field in the absence of inversion symmetry. We also clarify that d+fd+f-wave pairing is favored and the hetero spin triplet ff-wave state is present in the FFLO state unlike state in the superconductors only with the Rashba type spin-orbit coupling (RSOC) originating from the broken inversion symmetry. The triplet ff-wave state is enhanced by magnetic field and the RSOC. This stems from the reduction of the spin susceptibilities by the magnetic field and the RSOC.Comment: 9 pages, 15 figures, 1 tabl

    Topological effects in the thermal properties of knotted polymer rings

    Full text link
    The topological effects on the thermal properties of several knot configurations are investigated using Monte Carlo simulations. In order to check if the topology of the knots is preserved during the thermal fluctuations we propose a method that allows very fast calculations and can be easily applied to arbitrarily complex knots. As an application, the specific energy and heat capacity of the trefoil, the figure-eight and the 818_1 knots are calculated at different temperatures and for different lengths. Short-range repulsive interactions between the monomers are assumed. The knots configurations are generated on a three-dimensional cubic lattice and sampled by means of the Wang-Landau algorithm and of the pivot method. The obtained results show that the topological effects play a key role for short-length polymers. Three temperature regimes of the growth rate of the internal energy of the system are distinguished.Comment: 7 pages, 12 figures, LaTeX + RevTeX. With respect to the first version, in the second version the text has been improved and all figures are now in black and whit

    Merging Galaxies in the SDSS EDR

    Full text link
    We present a new catalog of merging galaxies obtained through an automated systematic search routine. The 1479 new pairs of merging galaxies were found in approximately 462 sq deg of the Sloan Digital Sky Survey Early Data Release (SDSS EDR; Stoughton et al. 2002) photometric data, and the pair catalog is complete for galaxies in the magnitude range 16.0 <= g* <= 20. The selection algorithm, implementing a variation on the original Karachentsev (1972) criteria, proved to be very efficient and fast. Merging galaxies were selected such that the inter-galaxy separations were less than the sum of the component galaxies' radii. We discuss the characteristics of the sample in terms of completeness, pair separation, and the Holmberg effect. We also present an online atlas of images for the SDSS EDR pairs obtained using the corrected frames from the SDSS EDR database. The atlas images also include the relevant data for each pair member. This catalog will be useful for conducting studies of the general characteristics of merging galaxies, their environments, and their component galaxies. The redshifts for a subset of the interacting and merging galaxies and the distribution of angular sizes for these systems indicate the SDSS provides a much deeper sample than almost any other wide-area catalog to date.Comment: 58 pages, which includes 15 figures and 6 tables. Figures 2, 8, 9, 10, 11, 13, and 14 are provided as JPEG files. For online atlas, see http://home.fnal.gov/~sallam/MergePair/ . Accepted for publication in A

    Uncertainty relations in curved spaces

    Full text link
    Uncertainty relations for particle motion in curved spaces are discussed. The relations are shown to be topologically invariant. New coordinate system on a sphere appropriate to the problem is proposed. The case of a sphere is considered in details. The investigation can be of interest for string and brane theory, solid state physics (quantum wires) and quantum optics.Comment: published version; phase space structure discussion adde
    corecore