13 research outputs found
ΠΠ»Π΅ΡΠΎΡΠ½Π°Ρ ΡΠ΅ΡΠ°ΠΏΠΈΡ ΠΏΡΠΈ ΡΡΠ°Π²ΠΌΠ°Ρ ΡΠΏΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°
The opportunities and the most promising ways of using cellular technology in traumatic spinal cord injury are considered in this review. A large number of experimental and clinical studies with the use of different types of cells: embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, Schwann cells, olfactory mucosa cells, and others β was conducted. The use of these types of cells in traumatic spinal cord injury treatment often demonstrated a positive therapeutic effect: the motor and sensory function recovery of the spinal cord. However, some types of cell preparations involve some methodological and ethical problems; some types of cell therapies are ineffective or giveΒ rise to side effects. These factors complicate the selection of optimal cell therapy for the traumatic spinal cord injury treatment. The most promising cells seem to be the cells of the olfactory mucosa. Getting the olfactory mucosa is considered to be a feasible and safe procedure for patients. The clinical application of the cells of the olfactory mucosa is effective in motor function recovery due to remyelination and axonal regeneration after spinal cord injury. These cells are tissue-specific and autologous since they can be obtained from a patient with spinal cord injury, and after cultivation, expansion, and directed differentiation they can be transplanted to the same patient. The presented benefits of olfactory mucosa cells open up the possibility for its clinical application in the cell therapy.Β Π ΠΎΠ±Π·ΠΎΡΠ΅ ΡΠ΄Π΅Π»ΡΠ΅ΡΡΡ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡΠΌ ΠΈ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡΠΌ ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΏΡΠΈ ΡΡΠ°Π²ΠΌΠ°Ρ
ΡΠΏΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΡΠ°Π±ΠΎΡ ΠΈ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠΈΠΏΠΎΠ² ΠΊΠ»Π΅ΡΠΎΠΊ β ΡΠΌΠ±ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
ΡΡΠ²ΠΎΠ»ΠΎΠ²ΡΡ
, ΠΈΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΠ»ΡΡΠΈΠΏΠΎΡΠ΅Π½ΡΠ½ΡΡ
, ΠΌΠ΅Π·Π΅Π½Ρ
ΠΈΠΌΠ°Π»ΡΠ½ΡΡ
ΡΡΠ²ΠΎΠ»ΠΎΠ²ΡΡ
, Π¨Π²Π°Π½Π½ΠΎΠ²ΡΠΊΠΈΡ
, ΠΊΠ»Π΅ΡΠΎΠΊ ΠΎΠ±ΠΎΠ½ΡΡΠ΅Π»ΡΠ½ΠΎΠΉ Π²ΡΡΡΠΈΠ»ΠΊΠΈ ΠΈ Π΄Ρ. β ΠΏΡΠΈ ΡΡΠ°Π²ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΡΡ
ΡΠΏΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ
ΡΠ»ΡΡΠ°ΡΡ
ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΡΡΠ΅ΠΊΡ Ρ Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ ΡΠ΅Π½ΡΠΎΡΠ½ΠΎΠΉ ΠΈ ΠΌΠΎΡΠΎΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠΏΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°. ΠΠ΄Π½Π°ΠΊΠΎ ΠΎΡΠΌΠ΅ΡΠ΅Π½ΠΎ, ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² ΡΠ²ΡΠ·Π°Π½ΠΎ Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΈ ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ°ΠΌΠΈ, Π° ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ
ΡΠΈΠΏΠΎΠ² ΠΊΠ»Π΅ΡΠΎΠΊ ΠΌΠ°Π»ΠΎΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎ ΠΈΠ»ΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π½Π΅ΠΆΠ΅Π»Π°ΡΠ΅Π»ΡΠ½ΡΠΌ ΠΏΠΎΠ±ΠΎΡΠ½ΡΠΌ ΡΡΡΠ΅ΠΊΡΠ°ΠΌ. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΡΠ΅Π±Ρ ΠΊΠ»Π΅ΡΠΊΠΈ ΠΎΠ±ΠΎΠ½ΡΡΠ΅Π»ΡΠ½ΠΎΠΉ Π²ΡΡΡΠΈΠ»ΠΊΠΈ, ΠΏΡΠΈ ΡΡΠΎΠΌ ΠΏΡΠΎΡΠ΅Π΄ΡΡΠ° ΠΈΡ
ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π΄ΠΎΡΡΡΠΏΠ½Π° ΠΈ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½Π° Π΄Π»Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ². ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΎΠ±ΠΎΠ½ΡΡΠ΅Π»ΡΠ½ΠΎΠΉ Π²ΡΡΡΠΈΠ»ΠΊΠΈ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎ Π΄Π»Ρ Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΡΠ΅ΠΌΠΈΠ΅Π»ΠΈΠ½ΠΈΠ·Π°ΡΠΈΠΈ ΠΈ ΡΠ΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ Π°ΠΊΡΠΎΠ½ΠΎΠ² ΠΏΠΎΡΠ»Π΅ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΡ ΡΠΏΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°. ΠΠ°Π½Π½ΡΠ΅ ΠΊΠ»Π΅ΡΠΊΠΈ ΡΠ²Π»ΡΡΡΡΡ ΡΠΊΠ°Π½Π΅ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΡΠΌΠΈ ΠΈ Π°ΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ½ΡΠΌΠΈ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΠΎΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° Ρ ΡΡΠ°Π²ΠΌΠΎΠΉ ΡΠΏΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° ΠΈ ΠΏΠΎΡΠ»Π΅ Π½Π°ΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ Π² ΠΊΡΠ»ΡΡΡΡΠ΅ ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΠΉ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²ΠΊΠΈ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠΈΡΠΎΠ²Π°Π½Ρ ΡΠΎΠΌΡ ΠΆΠ΅ ΡΠ°ΠΌΠΎΠΌΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ. Π’Π°ΠΊΠΈΠ΅ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π° ΠΊΠ»Π΅ΡΠΎΠΊ ΠΎΠ±ΠΎΠ½ΡΡΠ΅Π»ΡΠ½ΠΎΠΉ Π²ΡΡΡΠΈΠ»ΠΊΠΈ ΠΎΡΠΊΡΡΠ²Π°ΡΡ ΡΠΈΡΠΎΠΊΠΈΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΈΡ
ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π² ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΏΡΠΈ ΡΡΠ°Π²ΠΌΠ°Ρ
ΡΠΏΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°
Π‘ΠΏΠ΅ΡΠΈΡΠΈΠΊΠ° ΡΠ»ΠΎΠ²Π°ΡΡ ΡΡΠ΅Π±Π½ΡΡ Π½Π°ΡΡΠ½ΠΎ-ΠΏΠΎΠΏΡΠ»ΡΡΠ½ΡΡ ΡΠ΅ΠΊΡΡΠΎΠ²
We discuss the lexical features of educational science popular texts. The science popular texts are written on scientific subjects for laymen: books, articles, notes, reviews and the essay of scientific works in newspapers and magazines, an interview of scientists, reviews of scientific life and scientific literature. The purpose of these texts is to inform readers about certain scientific ideas, discoveries and inventions. Complex scientific topics in educational science popular texts are presented in a simple language, and the main task is to familiarize students with scientific knowledge in Russian and draw attention to the scientific problem in an accessible and understandable form. In addition, the science popular text is a model for producing its own text by analogy, an incentive for oral conversations and written essays. The main methodical mission of this text is to be the main one for the formation, development and improvement of all speech skills. The science popular texts are a source to new language information and material for problem and research tasks statements of students.ΠΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΠΎΠΏΠΈΡΠ°Π½Ρ Π»Π΅ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΡΠ΅Π±Π½ΡΡ
Π½Π°ΡΡΠ½ΠΎ-ΠΏΠΎΠΏΡΠ»ΡΡΠ½ΡΡ
ΡΠ΅ΠΊΡΡΠΎΠ². ΠΠ°ΡΡΠ½ΠΎ-ΠΏΠΎΠΏΡΠ»ΡΡΠ½ΡΠ΅ ΡΠ΅ΠΊΡΡΡ ΠΏΠΈΡΡΡΡΡ Π½Π° Π½Π°ΡΡΠ½ΡΠ΅ ΡΠ΅ΠΌΡ Π΄Π»Ρ ΡΠΈΡΠ°ΡΠ΅Π»Π΅ΠΉ, Π½Π΅ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΡΡΡΠΈΡ
ΡΡ Π² Π΄Π°Π½Π½ΡΡ
ΡΠ΅ΠΌΠ°Ρ
. ΠΠΎΠΆΠ½ΠΎ Π²ΡΡΡΠ΅ΡΠΈΡΡ ΠΈΡ
Π² ΡΡΠ°ΡΡΡΡ
, ΠΈΠ½ΡΠ΅ΡΠ²ΡΡ ΡΡΠ΅Π½ΡΡ
, ΡΠ΅ΡΠ΅Π½Π·ΠΈΡΡ
ΠΊ Π½Π°ΡΡΠ½ΡΠΌ ΡΡΡΠ΄Π°ΠΌ, ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΆΡΡΠ½Π°Π»Π°Ρ
, ΡΡΠ΅Π±Π½ΠΈΠΊΠ°Ρ
ΠΈ ΡΡΠ΅Π±Π½ΡΡ
ΠΏΠΎΡΠΎΠ±ΠΈΡΡ
. ΠΠ°Π΄Π°ΡΠ° ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ
ΡΠ΅ΠΊΡΡΠΎΠ² Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΠΈΠ½ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΡΠΈΡΠ°ΡΠ΅Π»Π΅ΠΉ ΠΎ ΡΠ΅Ρ
ΠΈΠ»ΠΈ ΠΈΠ½ΡΡ
Π½Π°ΡΡΠ½ΡΡ
ΠΈΠ΄Π΅ΡΡ
, ΠΎΡΠΊΡΡΡΠΈΡΡ
ΠΈ ΠΈΠ·ΠΎΠ±ΡΠ΅ΡΠ΅Π½ΠΈΡΡ
. ΠΠ°ΡΡΠ½ΠΎ-ΠΏΠΎΠΏΡΠ»ΡΡΠ½ΡΠ΅ ΡΠ΅ΠΊΡΡΡ ΠΈΠ³ΡΠ°ΡΡ ΡΠΎΠ»Ρ ΠΏΠΎΡΡΠ΅Π΄Π½ΠΈΠΊΠ° ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΡΡΠ°ΠΌΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π½Π°ΡΡΠ½ΡΡ
ΡΡΠ΅Ρ ΠΈ ΡΠΈΡΠ°ΡΠ΅Π»Π΅ΠΉ ΡΠ°Π·Π½ΡΡ
ΡΠΎΡΠΈΠ°Π»ΡΠ½ΡΡ
ΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ½ΡΡ
Π³ΡΡΠΏΠΏ. Π ΡΡΠ΅Π±Π½ΡΡ
Π½Π°ΡΡΠ½ΠΎ-ΠΏΠΎΠΏΡΠ»ΡΡΠ½ΡΡ
ΡΠ΅ΠΊΡΡΠ°Ρ
ΡΠ»ΠΎΠΆΠ½ΡΠ΅ Π½Π°ΡΡΠ½ΡΠ΅ ΡΠ΅ΠΌΡ ΠΈΠ·Π»Π°Π³Π°ΡΡΡΡ ΠΏΡΠΎΡΡΡΠΌ ΡΠ·ΡΠΊΠΎΠΌ, Π° ΠΈΡ
ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅ΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ Π² Π΄ΠΎΡΡΡΠΏΠ½ΠΎΠΉ ΠΈ ΠΏΠΎΠ½ΡΡΠ½ΠΎΠΉ ΡΡΠ°ΡΠ΅ΠΌΡΡΡ ΡΠΎΡΠΌΠ΅ ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠΈΡΡ Π΅Π³ΠΎ Ρ Π½Π°ΡΡΠ½ΡΠΌΠΈ Π·Π½Π°Π½ΠΈΡΠΌΠΈ Π½Π° ΡΡΡΡΠΊΠΎΠΌ ΡΠ·ΡΠΊΠ΅ ΠΈ ΠΏΡΠΈΠ²Π»Π΅ΡΡ Π΅Π³ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΊ Π½Π°ΡΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ΅. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, Π½Π°ΡΡΠ½ΠΎ-ΠΏΠΎΠΏΡΠ»ΡΡΠ½ΡΠΉ ΡΠ΅ΠΊΡΡ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ ΠΏΡΠΎΠ΄ΡΡΠΈΡΠΎΠ²Π°ΡΡ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠΉ ΡΠ΅ΠΊΡΡ ΠΏΠΎ Π°Π½Π°Π»ΠΎΠ³ΠΈΠΈ, ΡΡΠΈΠΌΡΠ»ΠΈΡΡΠ΅Ρ ΠΊ Π΄ΠΈΡΠΊΡΡΡΠΈΠΈ ΠΈ ΠΏΠΈΡΡΠΌΠ΅Π½Π½ΡΠΌ ΡΠΎΡΠΈΠ½Π΅Π½ΠΈΡΠΌ. ΠΠ»Π°Π²Π½ΠΎΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΏΡΠ΅Π΄Π½Π°Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ³ΠΎ ΡΠ΅ΠΊΡΡΠ° - Π±ΡΡΡ ΠΎΡΠ½ΠΎΠ²ΠΎΠΉ Π΄Π»Ρ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ, ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΈ ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ Π²ΡΠ΅Ρ
ΡΠ΅ΡΠ΅Π²ΡΡ
ΡΠΌΠ΅Π½ΠΈΠΉ. Π’Π°ΠΊΠΆΠ΅ Π½Π°ΡΡΠ½ΠΎ-ΠΏΠΎΠΏΡΠ»ΡΡΠ½ΡΠΉ ΡΠ΅ΠΊΡΡ ΡΠ»ΡΠΆΠΈΡ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠΌ Π½ΠΎΠ²ΠΎΠΉ ΡΠ·ΡΠΊΠΎΠ²ΠΎΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠΌ Π΄Π»Ρ ΠΏΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ ΡΡΡΠ΄Π΅Π½ΡΠ°ΠΌΠΈ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ½ΡΡ
, ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΡΠΊΠΈΡ
Π·Π°Π΄Π°Ρ
Parameter determination of observation station versus mining and geological conditions of subsoil use
In view of the commencement of new requirements on mining operational planning, the regulations have been set for the arrangement of observation stations for mining-induced ground surface deformation for all types of minerals. In this regard, parameter determination for survey stations at such objects of the physicochemical geotechnology as underground hydrocarbon storages is of the current concern. The regulatory and legal framework and the mining-and-geological conditions of subsoil use objects are reviewed with a special emphasis placed on the chief factors which have influence on arrangement of a deformation observation station. The observation station parameters are calculated with regard to mining-and geological conditions. As a result of the implemented research, the analytical expressions are for the first time ever obtained for determining the number of the control points of GNSS network and observation leveling network. It is found that in flat-lying beds, given no faulting, an observation station boundary can be defined by the averaged limit dip angle of the beds and by the depth of mining operations. The observation station boundaries can be delineated analytically, with regard to mining and geological conditions of a subsoil use object: area sizes of underground excavations, mining depth, averaged limit dip angle, thickness of enclosing and overlying rock masses. Β© 2021 Publishing house Mining book. All rights reserved
The effect of stock density on the feeding intensity and growth rate of carp underyearlings
ΠΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π²ΡΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ ΡΠ΅Π³ΠΎΠ»Π΅ΡΠΊΠΎΠ² ΠΊΠ°ΡΠΏΠ° ΠΏΡΠΈ Π½ΠΈΠ·ΠΊΠΈΡ
ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΡΡ
ΠΏΠΎΒΡΠ°Π΄ΠΊΠΈ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, ΡΡΠΎ Π²ΡΡΠ°ΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π³ΠΎΠ»Π΅ΡΠΊΠΈ Π±ΡΠ»ΠΈ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½Ρ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΠΈΡΠ΅ΠΉ ΠΈ ΠΊΠΎΡΠΌΠ°ΠΌΠΈ, ΡΡΠΎ ΠΎΡΡΠ°Π·ΠΈΠ»ΠΎΡΡ Π½Π° ΠΈΡ
ΡΠ΅ΠΌΠΏΠ΅ ΡΠΎΡΡΠ° ΠΈ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΉ ΡΡΠ΅Π΄Π½Π΅ΡΡΡΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡΠ΅. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΉ ΡΡΠ±ΠΎΠΏΠΎΡΠ°Π΄ΠΎΡΠ½ΡΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» Π±ΡΠ» ΠΊΡΡΠΏΠ½ΡΠΌ, ΡΡΠ΅Π΄Π½Π΅ΠΉ ΠΌΠ°ΡΡΠΎΠΉ Π±ΠΎΠ»Π΅Π΅ 40 Π³.The article contains the results of growing carp underyearlings with a low stock density. The studies revealed that grown underyearlings were sufficiently provided with natural food and feed; this is reflected in their growth rate and the final average specimen weight. The obtained breeding material was large-sized, with the average weight exceeding 40 g
Teaching the scientific style of the Russian language (Mathematics, Chemistry, Physics) to Foreign students at the university
This article is concerned with main problems of teaching the scientific style to foreign students. There is a need for careful selection of educational material when the teacher thinks over a particular algorithm for working with text in a foreign language using scientific and professional terms, basic grammatical and syntactical models that are typical of the Russian language. In a certain linguistic environment, nonative speakers actively acquire strong knowledge, eliminating linguistic difficulties during professionaloriented lessons. Β© 2018. revistaESPACIOS.com.Este artΓculo trata sobre los principales problemas de la enseΓ±anza del estilo cientΓfico a estudiantes extranjeros. Existe la necesidad de una selecciΓ³n cuidadosa del material educativo cuando el profesor piensa en un algoritmo particular para trabajar con texto en una lengua extranjera utilizando tΓ©rminos cientΓficos y profesionales, modelos gramaticales y sintΓ‘cticos bΓ‘sicos que son tΓpicos de la lengua rusa. En un entorno lingΓΌΓstico determinado, los hablantes no nativos adquieren activamente un conocimiento sΓ³lido, eliminando las dificultades lingΓΌΓsticas durante las lecciones orientadas a profesionales. Β© 2018. revistaESPACIOS.com
Glaucoma "landscape" in Russia, CIS and Eastern European countries: what has changed over 15 years?
A.Yu. Brezhnev1, E.A. Egorov2, V.P. Erichev3, A.V. Kuroedov2,4, P.Ch. Zavadsky5, M. Bozic6, N.N. Voronova7, M.F. Dzhumova8, N.V. Ivanova7, T.A. Imshenetskaya9, T.G. Kamenskikh10, O.I. Lebedev11, L.N. Marchenko8, A.L. Onishchenko12, N.A. Sobyanin13, V.F. Ekgardt14
1Kursk State Medical University, Kursk, Russian Federation
2Pirogov Russian National Research Medical University, Moscow, Russian Federation
3Krasnov Research Institute of Eye Diseases, Moscow, Russian Federation
4P.V. Mandryka Military Clinical Hospital, Moscow, Russian Federation
5LLC "Ophthalmological Center of Karelia", Petrozavodsk, Russian Federation
6University Eye Clinic, University of Belgrade, Belgrade, Serbia
7V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
8Belarusian State Medical University, Minsk, Belarus
9Belarusian Medical Academy of Post-Diploma Education, Minsk, Belarus
10V.I. Razumovskiy Saratov State Medical University, Saratov, Russian Federation
11Omsk State Medical University, Omsk, Russian Federation
12Novokuznetsk State Institute for Advanced medical Education β Branch of Russian Medical Academy of Continuous Professional Education, Novokuznetsk, Russian Federation
13F.Kh. Gral City Clinical Hospital No. 2, Perm, Russian Federation
14South Ural State Medical University, Chelyabinsk, Russian Federation
Aim: to assess the changes in clinical and epidemiological characteristics, diagnostic and treatment options of primary open-angle glaucoma (POAG) in the Russian Federation and multiple near- and far-abroad countries over the period of 2005β2020.
Patients and Methods: the final protocol of this retrospective multi-center research and clinical study included 289 patients with POAG from 7 states (Russia, Belarus, Serbia, Moldova, Kyrgyzstan, Slovakia, and Slovenia). The authors analyzed the methods used for establishing POAP diagnosis, clinical and demographic patient characteristics (gender, age and place of residence), as well as the process of glaucoma development (age of onset, disease duration and stages, intraocular pressure, ocular hypotensive medications, and the used laser and surgical procedures). All patients were divided into four groups depending on the time of making the initial diagnosis: 2004β2005, 2009β2010, 2014β2015, 2019β2020.
Results: tonometry with Maklakov and Goldmann tonometers is still considered the gold standard for measuring intraocular pressure (IOP) (95% of cases). The percentage of pneumotonometry increased from 40% in 2005 to 60% in 2020. Approximately a third of clinics are still using electronic tonography as a supplementary method. Static automated perimetry is a basic tool for diagnosis and follow-up of patients with POAG (more than 95% of cases). Manual kinetic perimetry (Foerster's perimetry) is used in less than 10% of cases. Ophthalmoscopy (direct and binocular) was involved in the diagnostic process in all clinics and in all cases.
The range of instrumental visualization technologies includes optical coherence tomography (OCT), Heidelberg Retina Tomography (HRT), and scanning laser polarimetry. Currently, OCT is utilized in 90% of clinics. It was found out that in 2005 the standard of initial POAG diagnosis encompassed a set of Maklakov/Goldmann tonometry, ophthalmoscopy and kinetic perimetry. In 2020, this list includes Maklakov/Goldmann tonometry, pneumotonometry as a supplemental tool, static automated perimetry, ophthalmoscopy and OCT. The percentage of newly diagnosed POAG at the early stage has increased twofold over the past 15 years (from 20% in 2005 to 38% in 2020). The mean age of patients at the time of initial POAG diagnosis in 2005 was 62 (52; 67) years, in 2020 β 65 (50; 70) years, respectively (Ρ=0.694). The proportion of prostaglandins in medication therapy increased by 20% over the past 15 years, while the proportion of beta-blockers reduced by the same percentage. The use of cholinomimetic drugs was almost discontinued. The total number of glaucoma laser surgeries has grown, and in the last decade the top priority has been given to selective laser trabeculoplasty, while the share of argon laser trabeculoplasty has decreased by 10%. The rate of primary glaucoma surgeries (trabeculectomy) keeps going down.
Conclusion: a gradual and consistent implementation of high-tech diagnostic methods (static automated perimetry and OCT) in the routine practice occurred over 2005β2020. Also, there was a clear trend in more extensive use of objective data. The evolution of pharmaceutical "landscape" in the disease management is associated with an increasing proportion of more effective and safe drugs (prostaglandin analogues) and a diminishing role of beta-blockers as drugs of choice for starting therapy. The share of glaucoma surgeries as a starting strategy of POAG management was running down steadily from 2005 to 2010.
Keywords: glaucoma, intraocular pressure, tonometry, perimetry, optical coherence tomography, trabeculectomy. For citation: Brezhnev A.Yu., Egorov E.A., Erichev V.P. et al. Glaucoma "landscape" in Russia, CIS and Eastern European countries: what has changed over 15 years? Russian Journal of Clinical Ophthalmology. 2023;23(2):73β79 (in Russ.). DOI: 10.32364/2311-7729-2023-23-2-73-79.
</p